Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v11.i3.40
pages 269-290

DROPLET FORMATION AND SIZE DISTRIBUTIONS FROM AN IMMISCIBLE INTERFACE IMPINGED WITH A VERTICAL NEGATIVELY BUOYANT JET

Peter Friedman
University of Massachusetts Dartmouth
A. L. Winthrop
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
Joseph Katz
Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, USA

ABSTRACT

When an upward-flowing water jet impinges on an interface with an immiscible layer of lighter oil above it, the jet momentum lifts the interface and forms a cavity. Below a threshold based on Richardson number (Ri) and Reynolds number (Re), no droplets form. Above this threshold, oil drops are formed by two Richardson number-dependent mechanisms. At high Richardson number, an oil lip created at the edge of the cavity detaches to form oil droplets in the water below. At lower Richardson number, the water cavity becomes unstable and alternately collapses and reforms. As the collapsing cavity impacts the interface, it drags down fingers of the upper oil layer, which break into oil droplets. This article contains extensive droplet size distributions for varying Richardson number and Reynolds number and discusses the effects of varying viscosity ratio (h) and Morton number (Mo). Droplet sizes exhibit polydisperse log-normal distributions with mode diameters ranging from 0.6 to 1.5 mm. Characteristic diameters decrease primarily with increasing Re3/Ri, and to a lesser extent with decreasing viscosity ratio. Droplet distributions resulting from the lip pinch-off mechanism have a larger characteristic diameter than those formed by the cavity collapse mechanism.


Articles with similar content:

BREAKUP OF DROPLETS OF NEWTONIAN AND NON-NEWTONIAN FLUIDS
Atomization and Sprays, Vol.6, 1996, issue 3
D. S. Whitelaw, Jim H. Whitelaw, C. Arcoumanis
EXPERIMENTAL INVESTIGATION OF JET BREAKUP AT LOW WEBER NUMBER
Atomization and Sprays, Vol.27, 2017, issue 9
Raj M. Manglik, S. Rajendran, Milind A. Jog
NUMERICAL INVESTIGATION ON EFFECTS OF ELLIPTICAL DIESEL NOZZLE ON PRIMARY SPRAY CHARACTERISTICS BY LARGE EDDY SIMULATION (LES)
Atomization and Sprays, Vol.28, 2018, issue 8
Bifeng Yin, Bin Xu, Shenghao Yu, Ze Ye, Huaping Xu, Hekun Jia, Weixin Deng
AN EXPERIMENTAL STUDY ON THE INTERACTION BETWEEN AN IMMISCIBLE DROPLET AND A LIQUID TAYLOR-VORTEX FLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.5, 1997, issue
Hidetoshi Hana, Yoshimichi Hagiwara, Mitsuru Tanaka, T. None, M. Nakamura
Low Reynolds number effects on jets issuing from round and elliptic orifices
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
T. Epp, M. Koupriyanov, S.S. Aleyasin, Mark F. Tachie