Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 1.235

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015012652
pages 673-686


Mehmet N. Tomac
Department of Mechanical Engineering, Abdullah Gul University, 38080, Kayseri, Turkey
James W. Gregory
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA


An experimental investigation of the underlying flow physics of a dual-jet interaction fluidic oscillator spray has been conducted in the transition regime for a Reynolds number of 1680. The transition regime is defined as a narrow range of flow rates between two other operating modes of the fluidic oscillator. Particle image velocimetry (PIV) was used with refractive index−matching sodium iodide solution to minimize reflections from the spray geometry and obtain detailed internal velocity fields. PIV results show that the interaction of the two internal jets and the resultant vortices are responsible for the oscillation mechanism in the transition regime. Two side vortices sustain their existence throughout the oscillation period by altering their size, shape, and strength, and a dome vortex is created twice each oscillation period (once from each jet). The dome vortex plays a key role in the kinetic energy transfer mechanism inside the oscillator by means of jet bifurcations. The primary oscillation mechanism in the transition regime is that each internal jet's connection with the exiting jet is cut completely by the dome vortex in every period. This is in contrast to the low−flow rate oscillation mechanism, in which the oscillations are created by continuous collisions of the jets. Furthermore, the internal jets are observed to energize the side vortex on the opposite side of the chamber−a phenomenon that was not observed in the low−flow rate regime.