Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 1.235

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015011185
pages 687-712

SEMI-EMPIRICAL MODEL FOR THE UNSTEADY SHEAR BREAKUP OF LIQUID JETS IN CROSS-FLOW

Georg Eckel
German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
Michael Rachner
German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
Patrick Le Clercq
German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
Manfred Aigner
German Aerospace Center (DLR), Institute of Combustion Technology, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

ABSTRACT

The accuracy of spray simulations depends strongly on the initial and boundary conditions imposed on both the gaseous and the liquid phase. In many applications the droplet size distribution and droplet velocities close to the atomizer cannot be determined. In this study, a semi-empirical primary atomization model for Lagrangian particle tracking of the dispersed phase in Euler-Lagrange simulations is proposed. The examined atomization concept of a liquid jet in cross-flow subjected to a high velocity air stream is a configuration typical of industrial gas turbine applications. The model provides initial and boundary conditions not only via correlations for global parameters like characteristic diameters, it also delivers the sizes, starting positions and velocities of the droplets. This leads to an improved approximation of the droplet formation, droplet size distribution, and droplet propagation encountered in real sprays, which is here assessed by comparing simulation results with measurements.