Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v21.i1.10
pages 1-16

Dynamic Primary Atomization Characteristics in an Airblast Atomizer, High Pressure Conditions

Vital Gutierrez Fernandez
Heterogeneous, Multiphase Flows Unit, Aerodynamic and Energetic Models Department, Office National d'Etudes et de la Recherche Aérospatiales (ONERA), Toulouse, France
G. Lavergne
Heterogeneous, Multiphase Flows Unit, Aerodynamic and Energetic Models Department, Office National d'Etudes et de la Recherche Aérospatiales (ONERA), 31055 Toulouse Cedex 4, France
P. Berthoumieu
Heterogeneous, Multiphase Flows Unit, Aerodynamic and Energetic Models Department, Office National d'Etudes et de la Recherche Aérospatiales (ONERA), 31055 Toulouse Cedex 4, France

ABSTRACT

The primary atomization was studied experimentally for several flow configurations, in a planar airblast atomizer. The liquid sheet injected had a 300μm thickness. The employed techniques were Laser Oscillometry, LDV-PDI, PIV and flow visualization via fast camera. In the liquid flow, the momentum flux was varied by injecting both water and kerosene JET A1 at several velocities. Conversely, the airflow momentum flux was modified by adjusting both its velocity and absolute pressure. The latter parameter reached a value of 11bar. The atomization mechanisms described in the literature at standard conditions, were observed at the high pressure environments, as long as, the momentum flux ratio, M, remained constant. Furthermore, a new atomization mechanism was observed for values of M beyond 20. This regime was referred as membrane break-up due to the predominant structures observed. The results presented in this manuscript correspond to characteristics related to the sheets's motion: The global oscillation frequency, the wave velocity gradient in the intact sheet region and the sauter mean diameter far from the injector lips. Furthermore, these variables displayed a weak change both in magnitude and behaviour with the changes in atomization mechanisms. A set of empirical relations are provided to link these characteristics witht the flow conditions.


Articles with similar content:

AN EXPERIMENT STUDY ON PHENOMENON AND MECHANISM OF FLASH BOILING SPRAY FROM A MULTI-HOLE GASOLINE DIRECT INJECTOR
Atomization and Sprays, Vol.23, 2013, issue 5
Shenghua Yang, Zhiping Song, Zhuo Yao, Tianyou Wang
Geometric Primary Atomization Characteristics in an Airblast Atomizer, High Pressure Conditions
Atomization and Sprays, Vol.21, 2011, issue 1
P. Berthoumieu, G. Lavergne, Vital Gutierrez Fernandez
EXPERIMENTAL APPROACHES TO INVESTIGATING LIQUEFIED LPG SPRAY CHARACTERISTICS
Atomization and Sprays, Vol.20, 2010, issue 6
Kwan-Soo Lee, Ki-Hyung Lee, Ki-Bum Kim, Yung-Jin Kim
ANALYSIS OF PRIMARY BREAKUP IMAGES FROM AN ENGINE-RELATED SHEET ATOMIZER
Atomization and Sprays, Vol.27, 2017, issue 2
F. Mathieu, Reinhold Kneer, Manuel Armin Reddemann
EFFECT OF BUBBLE GENERATION CHARACTERISTICS ON EFFERVESCENT ATOMIZATION AT LOW GAS-LIQUID RATIO OPERATION
Atomization and Sprays, Vol.20, 2010, issue 3
David S. Nobes, Sina Ghaemi, Payam Rahimi