Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 1.235

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v9.i1.20
pages 29-50


Sushanta K. Mitra
University of Alberta
Xianguo Li
University of Waterloo


Spray combustion remains the dominant mode of energy conversion, providing the majority of the world's energy requirements. A good understanding of spray formation processes and spray droplet size distributions is essential for the design and operation of spray combustion systems with high energy efficiency and low pollutant emissions. The early stage of the spray formation process is clearly deterministic, with distinct unstable wave motion, whereas the final stage of spray formation process is more or less random, chaotic, and stochastic due to nonlinear effects of the unstable wave development. The number of droplets produced in a spray is enormous, and the description of each individual droplet becomes highly improbable, thus requiring a statistical treatment. The present model incorporates the deterministic aspect through the linear and nonlinear stability theory, and the stochastic aspect through the maximum entropy principle. It can predict, from a given flow condition at the nozzle exit, the spray formation process and the probability distribution of subsequently formed droplets in sprays. The effect of flow conditions at the nozzle exit on the droplet size distributions has been investigated. The present predictive model gives the initial distribution of droplet diameters and velocities in sprays, and hence will be useful as a submodel for overall spray combustion modeling.