Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 2.156 5-Year IF: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2020031091
pages 265-272

The Role of Lysophosphatidic Acid Receptors in Ovarian Cancer: A Minireview

Ran Cui
Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang District, Beijing, China
Huimin Bai
Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang District, Beijing, China
Guangming Cao
Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang District, Beijing, China
Zhenyu Zhang
Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Chaoyang District, Beijing, China

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lipid component of ovarian cancer activating factor, which is present at a high concentration in the ascitic fluid and plasma of patients with ovarian cancer. A group of six lysophosphatidic acid receptors (LPARs), LPAR1 through LPAR6, which belong to the G protein−coupled receptor superfamily (GPCR), mediate cellular activities of LPA and activates a series of downstream molecules and cellular responses, including biological and pathological effects. LPARs are widely expressed in normal ovary, benign tumor, and ovarian cancer tissues and cancer cell lines with a broad range of levels. The LPA/LPAR axis is involved in tumorigenesis and development of ovarian cancer through mediating the cellular responses to LPA and influencing the expression and function of oncogenic molecules. In the present review, the roles of LPARs in ovarian cancer, including the expression, function, and downstream molecules, are summarized, and we discuss the implications for ovarian cancer treatment that targets LPARs.

REFERENCES

  1. Cheaib B, Auguste A, Leary A. The PI3K/Akt/mTOR pathway in ovarian cancer: Therapeutic opportunities and challenges. Chin J Cancer. 2015;34(1):4-16.

  2. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A. Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res. 1995;1(10):1223-32.

  3. Xu Y, Shen Z, Wiper DW, Wu M, Morton RE, Elson P, Kennedy AW, Belinson J, Markman M, Casey G. Lyso-phosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA. 1998;280(8):719-23.

  4. Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, Hasegawa Y, Tanyi JL, LaPushin R, Eder A, Jaffe R, Erickson J, Mills GB. Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta. 2002;1582(1-3):257-64.

  5. Wang F, Fishman DA. Lysophosphatidic acid and invasion. Cancer Treat Res. 2009;149:269-96.

  6. Xu Y, Wang D, Wang Z. Lipid generation and signaling in ovarian cancer. Cancer Treat Res. 2009;149:241-67.

  7. Saunders JA, Rogers LC, Klomsiri C, Poole LB, Daniel LW. Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells. Free Radic Biol Med. 2010;49(12):2058-67.

  8. Goldsmith ZG, Ha JH, Jayaraman M, Dhanasekaran DN. Lysophosphatidic acid stimulates the proliferation of ovarian cancer cells via the gep proto-oncogene Ga12. Genes Cancer. 2011;2(5):563-75.

  9. Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospho-lipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol. 2014;171(15):3575-94.

  10. Onallah H, Catane LJ, Trope CG, Hetland Falkenthal TE, Reich R, Davidson B. Activity and clinical relevance of autotaxin and lysophosphatidic acid pathways in high-grade serous carcinoma. Virchows Arch. 2018;473(4):463-70.

  11. Park J, Jang JH, Oh S, Kim M, Shin C, Jeong M, Heo K, Park JB, Kim SR, Oh YS. LPA-induced migration of ovarian cancer cells requires activation of ERM proteins via LPA1 and LPA2. Cell Signal. 2018;44:138-47.

  12. Goetzl EJ, Graeler M, Huang MC, Shankar G. Lysophos-pholipid growth factors and their G protein-coupled receptors in immunity, coronary artery disease, and cancer. Sci World J. 2002;2:324-38.

  13. Ishii I, Fukushima N, Ye X, Chun J. Lysophospholipid receptors: Signaling and biology. Annu Rev Biochem. 2004;73(1):321-54.

  14. Choi JW, Herr DR, Noguchi K, Yung YC, Lee C-W, Mutoh T, Lin M-E, Teo ST, Park KE, Mosley AN, Chun J. LPA receptors: Subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50(1):157-86.

  15. Fujita T, Miyamoto S, Onoyama I, Sonoda K, Mekada E, Nakano H. Expression of lysophosphatidic acid receptors and vascular endothelial growth factor mediating lyso-phosphatidic acid in the development of human ovarian cancer. Cancer Lett. 2003;192(2):161-9.

  16. Wang P, Wu X, Chen W, Liu J, Wang X. The lysophos-phatidic acid (LPA) receptors their expression and signif-icance in epithelial ovarian neoplasms. Gynecol Oncol. 2007;104(3):714-20.

  17. Reinartz S, Lieber S, Pesek J, Brandt DT, Asafova A, Finkemagel F, Watzer B, Nockher WA, Nist A, Stiewe T, Jansen JM, Wagner U, Konzer A, Graumann J, Grosse R, Worzfeld T, Muller-Brusselbach S, Muller R. Cell type-selective pathways and clinical associations of lysophosphatidic acid biosynthesis and signaling in the ovarian cancer microenvironment. Mol Oncol. 2019;13(2):185-201.

  18. Yu X, Zhang Y, Chen H. LPA receptor 1 mediates LPA-induced ovarian cancer metastasis: An in vitro and in vivo study. BMC Cancer. 2016;16(1):846.

  19. Nakamoto T, Yasuda K, Yasuhara M, Yoshimura T, Kinoshita T, Nakajima T, Okada H, Ikuta A, Kanzaki H. Expression of the endothelial cell differentiation gene 7 (EDG-7), a lysophosphatidic acid receptor, in ovarian tumor. J Obstet Gynaecol Res. 2005;31(4):344-51.

  20. Noguchi K, Ishii S, Shimizu T. Identification of p2y9/ GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem. 2003;278(28):25600-6.

  21. Goetzl EJ, Dolezalova H, Kong Y, Hu YL, Jaffe RB, Kalli KR, Conover CA. Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res. 1999;59(20):5370-5.

  22. Pustilnik TB, Estrella V, Wiener JR, Mao M, Eder A, Watt MA, Bast RC Jr, Mills GB. Lysophosphatidic acid induces urokinase secretion by ovarian cancer cells. Clin Cancer Res. 1999;5(11):3704-10.

  23. Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA, Lu Y, Fang X, Tsutsui S, Siddik ZH, Bast RC, Mills GB. Overexpression of Edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin Cancer Res. 1999;5(12):4308-18.

  24. Hu YL, Tee MK, Goetzl EJ, Auersperg N, Mills GB, Ferrara N, Jaffe RB. Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. J Natl Cancer Inst. 2001;93(10):762-8.

  25. Hu YL, Albanese C, Pestell RG, Jaffe RB. Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst. 2003; 95(10):733-40.

  26. Kim EK, Park JM, Lim S, Choi JW, Kim HS, Seok H, Seo JK, Oh K, Lee DS, Kim KT, Ryu SH, Suh PG. Activation of AMP-activated protein kinase is essential for lysophosphatidic acid-induced cell migration in ovarian cancer cells. J Biol Chem. 2011;286(27):24036-45.

  27. Wang FQ, Smicun Y, Calluzzo N, Fishman DA. Inhibition of matrilysin expression by antisense or RNA interference decreases lysophosphatidic acid-induced epithelial ovarian cancer invasion. Mol Cancer Res. 2006;4(11):831-41.

  28. Oyesanya RA, Lee ZP, Wu J, Chen J, Song Y, Mukherjee A, Dent P, Kordula T, Zhou H, Fang X. Transcriptional and post-transcriptional mechanisms for lysophosphatidic acid-induced cyclooxygenase-2 expression in ovarian cancer cells. FASEB J. 2008;22(8):2639-51.

  29. Panupinthu N, Yu S, Zhang D, Zhang F, Gagea M, Lu Y, Grandis JR, Dunn SE, Lee HY, Mills GB. Self-reinforcing loop of amphiregulin and Y-box binding protein-1 con-tributes to poor outcomes in ovarian cancer. Oncogene. 2014;33(22):2846-56.

  30. Said NA, Najwer I, Socha MJ, Fulton DJ, Mok SC, Motamed K. SPARC inhibits LPA-mediated mesothelial-ovarian cancer cell crosstalk. Neoplasia. 2007;9(1): 23-35.

  31. Boucharaba A, Serre CM, Guglielmi J, Bordet JC, Clezardin P, Peyruchaud O. The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases. Proc Natl Acad Sci USA. 2006;103(25):9643-8.

  32. Chen H, Wu X, Pan ZK, Huang S. Integrity of SOS1/ EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Res. 2010;70(23):9979-90.

  33. Seo EJ, Kwon YW, Jang IH, Kim DK, Lee SI, Choi EJ, Kim KH, Suh DS, Lee JH, Choi KU, Lee JW, Mok HJ, Kim KP, Matsumoto H, Aoki J, Kim JH. Autotaxin regulates maintenance of ovarian cancer stem cells through ly-sophosphatidic acid-mediated autocrine mechanism. Stem Cells. 2016;34(3):551-64.

  34. Xu J, Lai YJ, Lin WC, Lin FT. TRIP6 enhances lyso-phosphatidic acid-induced cell migration by interacting with the lysophosphatidic acid 2 receptor. J Biol Chem. 2004;279(11):10459-68.

  35. Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res. 2006;66(6):3006-14.

  36. Jeong KJ, Park SY, Seo JH, Lee KB, Choi WS, Han JW, Kang JK, Park CG, Kim YK, Lee HY. Lysophosphatidic acid receptor 2 and Gi/Src pathway mediate cell motility through cyclooxygenase 2 expression in CAOV-3 ovarian cancer cells. Exp Mol Med. 2008;40(6):607-16.

  37. Wang GL, Wen ZQ, Xu WP, Wang ZY, Du XL, Wang F. Inhibition of lysophosphatidic acid receptor-2 expression by RNA interference decreases lysophosphatidic acid-induced urokinase plasminogen activator activation, cell invasion, and migration in ovarian cancer SKOV-3 cells. Croat Med J. 2008;49(2):175-81.

  38. Mukherjee A, Wu J, Barbour S, Fang X. Lysophos-phatidic acid activates lipogenic pathways and de novo lipid synthesis in ovarian cancer cells. J Biol Chem. 2012; 287(30):24990-5000.

  39. Yu S, Murph MM, Lu Y, Liu S, Hall HS, Liu J, Stephens C, Fang X, Mills GB. Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells. J Natl Cancer Inst. 2008;100(22):1630-42.

  40. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, Murakami-Murofushi K, Tsujimoto M, Arai H, Inoue K. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem. 1999;274(39):27776-85.

  41. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett. 2000;478(1-2):159-65.

  42. Sengupta S, Xiao YJ, Xu Y. A novel laminin-induced LPA autocrine loop in the migration of ovarian cancer cells. FASEB J. 2003;17(11):1570-2.

  43. Fukushima N, Kimura Y, Chun J. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci USA. 1998;95(11):6151-6.

  44. Ishii I, Contos JJ, Fukushima N, Chun J. Functional comparisons of the lysophosphatidic acid receptors, LPA1/ VZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol Pharmacol. 2000;58(5):895-902.

  45. Sharma T, Dhingra R, Singh S, Sharma S, Tomar P, Malhotra M, Bhardwaj TR. Aflibercept: A novel VEGF targeted agent to explore the future perspectives of anti-angiogenic therapy for the treatment of multiple tumors. Mini Rev Med Chem. 2013;13(4):530-40.

  46. Ai B, Bie Z, Zhang S, Li A. Paclitaxel targets VEGF-mediated angiogenesis in ovarian cancer treatment. Am J Cancer Res. 2016;6(8):1624-35.

  47. Huang M-C, Lee H-Y, Yeh C-C, Kong Y, Zaloudek CJ, Goetzl EJ. Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene. 2004;23(1):122-9.

  48. John RR, Malathi N, Ravindran C, Anandan S. Mini review: Multifaceted role played by cyclin D1 in tumor behavior. Indian J Dent Res. 2017;28(2):187-92.

  49. Ramos-Garcia P, Gil-Montoya JA, Scully C, Ayen A, Gonzalez-Ruiz L, Navarro-Trivino FJ, Gonzalez-Moles MA. An update on the implications of cyclin D1 in oral carcinogenesis. Oral Dis. 2017;23(7):897-912.

  50. Santibanez JF. Urokinase type plasminogen activator and the molecular mechanisms of its regulation in cancer. Protein Pept Lett. 2017;24(10):936-46.

  51. Estrella VC, Eder AM, Liu S, Pustilnik TB, Tabassam FH, Claret FX, Gallick GE, Mills GB, Wiener JR. Lysophosphatidic acid induction of urokinase plasminogen activator secretion requires activation of the p38MAPK pathway. Int J Oncol. 2007;31(2):441-9.

  52. Wu KK, Cheng HH, Chang TC. 5-methoxyindole metabolites of L-tryptophan: Control of COX-2 expression, inflammation and tumorigenesis. J Biomed Sci. 2014;21(1):17.

  53. Yu T, Lao X, Zheng H. Influencing COX-2 activity by COX related pathways in inflammation and cancer. Mini Rev Med Chem. 2016;16(15):1230-43.

  54. Clendenen TV, Lundin E, Zeleniuch-Jacquotte A, Koenig KL, Berrino F, Lukanova A, Lokshin AE, Idahl A, Ohlson N, Hallmans G, Krogh V, Sieri S, Muti P, Marrangoni A, Nolen BM, Liu M, Shore RE, Arslan AA. Circulating inflammation markers and risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2011;20(5):799-810.

  55. Maccio A, Madeddu C. Inflammation and ovarian cancer. Cytokine. 2012;58(2):133-47.

  56. Wang Y, Li L, Guo X, Jin X, Sun W, Zhang X, Xu RC. Interleukin-6 signaling regulates anchorage-independent growth, proliferation, adhesion and invasion in human ovarian cancer cells. Cytokine. 2012;59(2):228-36.

  57. Wang Y, Xu RC, Zhang XL, Niu XL, Qu Y, Li LZ, Meng XY. Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine. 2012;59(1):145-55.

  58. Penson RT, Kronish K, Duan Z, Feller AJ, Stark P, Cook SE, Duska LR, Fuller AF, Goodman AK, Nikrui N, Mac-Neill KM, Matulonis UA, Prefer FI, Seiden MV. Cytokines IL-1P, IL-2, IL-6, IL-8, MCP-1, GM-CSF and TNFa in patients with epithelial ovarian cancer and their relationship to treatment with paclitaxel. Int J Gynecol Cancer. 2000;10(1):33-41.

  59. Dobrzycka B, Mackowiak-Matejczyk B, Terlikowska KM, Kulesza-Bronczyk B, Kinalski M, Terlikowski SJ. Serum levels of IL-6, IL-8 and CRP as prognostic factors in epithelial ovarian cancer. Eur Cytokine Netw. 2013;24(3):106-13.

  60. Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX, La- Pushin R, Claret FX, Aggarwal BB, Lu Y, Mills GB. Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem. 2004;279(10):9653-61.

  61. Haghnegahdar H, Du J, Wang D, Strieter RM, Burdick MD, Nanney LB, Cardwell N, Luan J, Shattuck-Brandt R, Richmond A. The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. J Leukoc Biol. 2000;67(1):53-62.

  62. Li A, Varney ML, Singh RK. Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype. Clin Exp Metastasis. 2004;21(7):571-9.

  63. Shintani S, Ishikawa T, Nonaka T, Li C, Nakashiro KI, Wong DTW, Hamakawa H. Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology. 2004;66(4):316-22.

  64. Fimmel S, Devermann L, Herrmann A, Zouboulis C. GRO-a: A potential marker for cancer and aging silenced by RNA interference. Ann N Y Acad Sci. 2007; 1119:176-89.

  65. Yung MM, Tang HW, Cai PC, Leung TH, Ngu SF, Chan KK, Xu D, Yang H, Ngan HY, Chan DW. GRO-a and IL-8 enhance ovarian cancer metastatic potential via the CX-CR2-mediated TAK1/NFKB signaling cascade. Theranostics. 2018;8(5):1270-85.

  66. Lee Z, Swaby RF, Liang Y, Yu S, Liu S, Lu KH, Bast Jr RC, Mills GB, Fang X. Lysophosphatidic acid is a major regulator of growth-regulated oncogene a in ovarian cancer. Cancer Res. 2006;66(5):2740-8.

  67. Hardie DG. Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr. 2011;93(4): 891S-6.

  68. Liu Y, Tong L, Luo Y, Li X, Chen G, Wang Y. Resveratrol inhibits the proliferation and induces the apoptosis in ovarian cancer cells via inhibiting glycolysis and targeting AMPK/mTOR signaling pathway. J Cell Biochem. 2018;119(7):6162-72.

  69. Tang Y, Wang L, Goloubeva O, Khan MA, Lee D, Hussain A. The relationship of neuroendocrine carcinomas to anti-tumor therapies in TRAMP mice. Prostate. 2009;69(16):1763-73.

  70. Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, Van Brocklyn J, Ostrowski MC, Chiocca EA, Lawler SE. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37(5):620-32.

  71. Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol. 2002;3(8):586-99.

  72. Pore D, Gupta N. The Ezrin-Radixin-Moesin family of proteins in the regulation of B-cell immune response. Critical Rev Immunol. 2015;35(1):15-31.

  73. Ponuwei GA. A glimpse of the ERM proteins. J Biomed Sci. 2016;23:35.


Articles with similar content:

Aberrant Regulation of Alternative Pre-mRNA Splicing in Hepatocellular Carcinoma
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 2
Shuixiang Xie, Fan Zhu, Lijuan Liu, Chuanjie Zhang
The Role of Tissue Factor in Cancer-Related Hypercoagulability, Tumor Growth, Angiogenesis and Metastasis and Future Therapeutic Strategies
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 3-4
Grigoris T. Gerotziafas, Ιsmail Εlalamy, Patrick Van Dreden
Sp1 Control of Gene Expression in Myeloid Cells
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 3
Karen K. Resendes, Alan G. Rosmarin
Molecular Mechanisms Underlying the Role of MicroRNAs in Resistance to Epidermal Growth Factor Receptor-Targeted Agents and Novel Therapeutic Strategies for Treatment of Non-Small-Cell Lung Cancer
Critical Reviews™ in Oncogenesis, Vol.18, 2013, issue 4
Elena Galvani, Godefridus J. Peters, Mina Maftouh, Elisa Giovannetti, Amir Avan
Viral Infection and Cancer: The NF-κB/Snail/RKIP Loop Regulates Target Cell Sensitivity to Apoptosis by Cytotoxic Lymphocytes
Critical Reviews™ in Immunology, Vol.30, 2010, issue 1
Stavroula Baritaki, Benjamin Bonavida