Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Eukaryotic Gene Expression
IF: 2.156 5-Year IF: 2.255 SJR: 0.649 SNIP: 0.599 CiteScore™: 3

ISSN Print: 1045-4403
ISSN Online: 2162-6502

Critical Reviews™ in Eukaryotic Gene Expression

DOI: 10.1615/CritRevEukaryotGeneExpr.2015013358
pages 91-112

Zingiber officinale and Type 2 Diabetes Mellitus: Evidence from Experimental Studies

Muhammad Sajid Hamid Akash
Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
Kanwal Rehman
Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
Muhammad Tariq
Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
Shuqing Chen
Institute of Pharmacology, Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China

ABSTRACT

Zingiber officinale is being used as diet-based therapy because of its wide therapeutic potential in type 2 diabetes mellitus (T2DM) and against diabetic complications by directly interacting with different molecular and cellular pathways that provoke the pathogenesis of T2DM. This article explores the overall beneficial effects of Z. officinale on T2DM and its associated complications. Along with elucidating the beneficial facts of Z. officinale, this article may also aid in understanding the molecular basis of its effects in T2DM. The mechanistic rationale for antidiabetic effects of Z. officinale includes the inhibition of several transcriptional pathways, lipid peroxidation, carbohydrate-metabolizing enzymes, and HMG-CoA reductase and the activation of antioxidant enzyme capacity and low-density lipoprotein receptors. Consequently, by targeting these pathways, Z. officinale shows its antidiabetic therapeutic effects by increasing insulin sensitivity/synthesis, protecting β-cells of pancreatic islets, reducing fat accumulation, decreasing oxidative stress, and increasing glucose uptake by the tissues. In addition to these effects, Z. officinale also exhibits protective effects against several diabetes-linked complications, notably nephropathy and diabetic cataract, by acting as an antioxidant and antiglycating agent. In conclusion, this work suggests that consumption of Z. officinale can help to treat T2DM and diabetic complications; nevertheless, patient counseling also is required as a guiding force for the success of diet-based therapy in T2DM.


Articles with similar content:

Medicinal Mushrooms for Glycemic Control in Diabetes Mellitus: History, Current Status, Future Perspectives, and Unsolved Problems (Review)
International Journal of Medicinal Mushrooms, Vol.13, 2011, issue 5
Solomon P. Wasser, Hui-Chen Lo
Taking Ingredients as an Entry Point to Explore the Relationship between the Shaggy Ink Cap Medicinal Mushroom, Coprinus comatus (Agaricomycetes), and Diabetes Mellitus (Review)
International Journal of Medicinal Mushrooms, Vol.21, 2019, issue 5
Fangxue Xu, Shiyuan Wang, Mengmeng Zheng, Chunchao Han, Hong Guo, Yujuan Li, Xiaowei Cui, Xiaozhi Xi, Hui Cao
Effect of Dietary Fat on Gene Expression in Poultry, A Review
Critical Reviews™ in Eukaryotic Gene Expression, Vol.26, 2016, issue 4
M. Royan, Bahman Navidshad
Type 2 Diabetes: An Updated Overview
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 3
Asghar Ghasemi, Reza Norouzirad
Understanding the Skeletal Pathology of Type 1 and 2 Diabetes Mellitus
Critical Reviews™ in Eukaryotic Gene Expression, Vol.21, 2011, issue 2
Sandi Raehtz, Laura McCabe, Jing Zhang