Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Medicinal Mushrooms
IF: 1.423 5-Year IF: 1.525 SJR: 0.431 SNIP: 0.716 CiteScore™: 2.6

ISSN Print: 1521-9437
ISSN Online: 1940-4344

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.v19.i1.10
pages 1-16

Enhanced Release of Immunostimulating β-1,3- Glucan by Autodigestion of the Lingzhi Medicinal Mushroom, Ganoderma lingzhi (Agaricomycetes)

Yuina Ishimoto
Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
Ken-ichi Ishibashi
Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
Daisuke Yamanaka
Laboratory for Immunopharmacology of Microbial Products School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
Yoshiyuki Adachi
Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
Hisatomi Ito
R&D Group, Production Development Division, Nagase Beauty Care & Co., Ltd., Nishi-ku, Kobe, Japan
Kentaro Igami
R&D Group, Production Development Division, Nagase Beauty Care & Co., Ltd., Nishi-ku, Kobe, Japan
Toshitsugu Miyazaki
R&D Group, Production Development Division, Nagase Beauty Care & Co., Ltd., Nishi-ku, Kobe, Japan
Naohito Ohno
Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan

ABSTRACT

Ganoderma lingzhi is a widely used medicinal mushroom that has antioxidative effects, ameliorates insulin resistance, and improves quality of life in patients with metabolic syndrome. Potentiation of immunity is also a major function of G. lingzhi, and this has been applied in patients with cancer. Supplementing G. lingzhi into foods reduced the metastasis of cancer cells. β-l,3-glucan is an important bioactive component of G. lingzhi. In this study we enhanced the solubilization ofimmunostimulating β-l,3-glucan by autodigestion of G. lingzhi. Fruiting bodies of G. lingzhi were disrupted and suspended in distilled water, then autodigested at 37°C for 24 hours. The resulting suspension was dried by spray drying. To assess the solubilization of β-l,3-glucan by autodigestion, cold and hot water extracts and sodium hydroxide extracts of G. lingzhi were prepared with and without autodigestion. Sodium hydroxide extracts were neutralized and dialyzed against distilled water. The resulting soluble and precipitated fractions were collected. Chemical, biochemical, and immunochemical characteristics of the extracts were compared. The yields of cold water extracts of autodigested and native G. lingzhi were significantly lower than the other extracts. Glucose was the major sugar component of the hot water extract, cold alkali extract (CAS), and the cold hydroxide extract insoluble in neutral aqueous condition (CASP) of the autodigested and native G. lingzhi. Nuclear magnetic resonance analysis revealed branched β-glucans in the hot water extract and CAS of the autodigested and native G. lingzhi. By contrast, the CASP of the autodigested and native G. lingzhi comprised mainly mixtures of linear α-l,3-glucans and linear β-l,3-glucans. Immunostimulation by β-l,3-glucan was examined by limulus factor G activation, dectin-1 binding, and anti-β-glucan antibody binding. Comparing relative activity, immunostimulating β-l,3-glucan was detected in the hot water extract, rather than the CAS, of autodigested and native G. lingzhi. Immunostimulating of β-glucan was also detected in the cold water extract of the autodigested G. lingzhi. These findings demonstrate that autodigestion is a useful processing protocol for enhancing the usefulness of G. lingzhi as a functional food.


Articles with similar content:

Protection against Gut Inflammation and Sepsis in Mice by the Autodigested Product of the Lingzhi Medicinal Mushroom, Ganoderma lingzhi (Agaricomycetes)
International Journal of Medicinal Mushrooms, Vol.20, 2018, issue 9
Yoshiyuki Adachi, Toshitsugu Miyazaki, Hisatomi Ito, Yuina Ishimoto, Kentaro Igami, Naohito Ohno, Ken-ichi Ishibashi, Daisuke Yamanaka
Anti-β-Glucan Antibody in Bovine Sera
International Journal of Medicinal Mushrooms, Vol.7, 2005, issue 4
Yoshiyuki Adachi, Noriko N. Miura, Tsunenori Iriki, Yu-ichiro Kurone, Naohito Ohno, Ken-ichi Ishibashi, Chikaku Dogasaki, Masuro Motoi
Immunochemical Similarities in Polysaccharide Components of the Royal Sun Culinary-Medicinal Mushroom, Agaricus brasiliensis (Agaricomycetes), and Clinically Isolated Candida spp
International Journal of Medicinal Mushrooms, Vol.21, 2019, issue 5
Yoshiyuki Adachi, Chiho Yanai, Shota Yonetani, Koji Araki, Hiroaki Ohnishi, Naohito Ohno, Ken-ichi Ishibashi, Takao Shinohara, Hiroaki Tanaka, Daisuke Yamanaka
Effect of Sasa veitchii Extract on Immunostimulating Activity of β-glucan (SCG) from Culinary-Medicinal Mushroom Sparassis crispa Wulf.:Fr. (Higher Basidiomycetes)
International Journal of Medicinal Mushrooms, Vol.14, 2012, issue 6
Masamichi Tsuboi, Kazuo Takeshita, Masato Kanamori, Yoshiyuki Adachi, Noriko N. Miura, Mia Yoshida, Naohito Ohno, Toshie H. Hida, Natsuko Akachi
Comparison of the Immunomodulating Activities of 1,3-β-glucan Fractions from the Culinary-Medicinal Mushroom Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae)
International Journal of Medicinal Mushrooms, Vol.8, 2006, issue 3
Yoshiyuki Adachi, Noriko N. Miura, Hiromi Kawaminami, Toshiro Yadomae, Mitsuhiro Nakajima, Naohito Ohno, Toshie Harada