Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Medicinal Mushrooms
IF: 1.211 5-Year IF: 1.394 SJR: 0.433 SNIP: 0.661 CiteScore™: 1.38

ISSN Print: 1521-9437
ISSN Online: 1940-4344

International Journal of Medicinal Mushrooms

DOI: 10.1615/IntJMedMushrooms.v19.i4.70
pages 363-376

Turmeric Bioprocessed with Mycelia from the Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Protects Mice Against Salmonellosis

Sung Phil Kim
Research Institute of Basic Sciences, Ajou University, Suwon, South Korea; STR Biotech. Co., Ltd., Chuncheon, South Korea
Sang Jong Lee
STR Biotech. Co., Ltd., Chuncheon, South Korea
Seok Hyun Nam
Department of Biological Science, Ajou University, Suwon, South Korea
Mendel Friedman
Western Regional Research Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, USA

ABSTRACT

This study investigated the suppressive mechanisms of an extract from bioprocessed Lentinus edodes mycelial liquid culture supplemented with turmeric (bioprocessed Curcuma longa extract [BPCLE]) against murine salmonellosis. The BPLCE extract from the bioprocessed mycelia of the Salmonella Typhimurium into murine RAW 264.7 macrophage cells, elimination of intracellular bacteria, and elevation of inducible nitric oxide synthase expression. Dietary administration of BPCLE activated leukocytes from the mice infected with Salmonella through the intraperitoneal route. The enzyme-linked immunosorbent assay of the cytokines produced by splenocytes from infected mice showed significant increases in the levels of Th1 cytokines, including interleukin (IL)-1β, IL-2, IL-6, and IL-12. Histology showed that dietary administration of BPCLE protected against necrosis of the liver resulting from a sublethal dose of Salmonella. In addition, the treatment (1) extended the lifespan of lethally infected mice, (2) suppressed the invasion of Salmonella into human Caco-2 colorectal adenocarcinoma cells, (3) increased excretion of the bacterium in the feces, (4) suppressed the translocation of the Salmonella to internal organs, and (5) increased total immunoglobulin A in both serum and intestinal fluids. BPCLE protected the mice against salmonellosis via cooperative effects that include the upregulation of the Th1 immune reaction, prevention of translocation of bacteria across the intestinal epithelial cells, and increased immunoglobulin A production in serum and intestinal fluids.