Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Study on the Gas Holdup of Triangular Pitch and Square Pitch Sparger Geometry in Bubble Column

Volume 39, Issue 1, 2012, pp. 85-97
DOI: 10.1615/InterJFluidMechRes.v39.i1.60
Get accessGet access

ABSTRACT

Gas holdup in a bubble column has been studied for triangular and square geometries of a pitch sparger. The investigation was carried out in a bubble column characterized by an aspect ratio equal to four. The column was made up of plexiglas, equipped with sparger. The top of the column was open to atmosphere. The column was also equipped with appropriate rotameters for gas phase flow measurement and control. The liquids used in experiments were: deionised water, glycerin (50 %) and butanol (1.5 %) with atmospheric air representing the gas phase. A high-speed digital video camera was employed for the measuring of bubble rise velocity. The recorded images are also used to obtain an insight into the coalescence/breakage mechanisms occurring during bubble formation at the vicinity of the sparger. Using the appropriate software, rise velocity of the bubbles after their detachment from the triangular and square pitch spargers can be obtained from recorded images for examined liquid and flow conditions. The effect of sparger's geometry on the rise velocity of the bubbles was studied. An average gas holdup was estimated by bed expansion. The uncertainty of measurements is estimated to be less than 10 %. For two tested spargers, the transition point was determined to be independent from the pore size. It is also evident that the increase of liquid phase viscosity shifts the transition point to lower velocities. The only exception is a water whose transition velocity is lower than that of butanol solutions, despite of its higher viscosity. This behavior can be attributed to simultaneous effect of relatively low viscosity and high surface tension.

CITED BY
  1. Möller F., Seiler T., Lau Y.M., Weber Mf., Weber Mk., Hampel U., Schubert M., Performance comparison between different sparger plate orifice patterns: Hydrodynamic investigation using ultrafast X-ray tomography, Chemical Engineering Journal, 316, 2017. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain