Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

g-Jitter Free Convection Boundary Layer Flow of a Micropolar Fluid Near a Three-Dimensional Stagnation Point of Attachment

Volume 32, Issue 3, 2005, pp. 291-309
DOI: 10.1615/InterJFluidMechRes.v32.i3.40
Get accessGet access

ABSTRACT

A numerical solution of the effect of small but fluctuating gravitational field, characteristic of g-jitter, on the free convection boundary layer flow near a three-dimensional stagnation point of attachment resulting from a step change in its surface temperature and immersed in a micropolar fluid is presented in this paper. The case when the spin gradient on the wall is zero (strong concentration of the microelements) is considered. The transformed non-similar boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method to investigate the effects of variations in the forcing amplitude parameter, ε, forcing frequency parameter, Ω, curvature ratio parameter, c, and micropolar parameter, K, on the skin friction and on the rate of heat transfer. The results are given for a value of the Prandtl number Pr = 0.72. It has been found that these parameters affect considerably the considered flow and heat transfer characteristics. The comparison with earlier results for a Newtonian fluid (K = 0) is shown to be very good.

CITED BY
  1. Tlili Iskander, Effects MHD and Heat Generation on Mixed Convection Flow of Jeffrey Fluid in Microgravity Environment over an Inclined Stretching Sheet, Symmetry, 11, 3, 2019. Crossref

  2. Ali Bagh, Shafiq Anum, Siddique Imran, Al-Mdallal Qasem, Jarad Fahd, Significance of suction/injection, gravity modulation, thermal radiation, and magnetohydrodynamic on dynamics of micropolar fluid subject to an inclined sheet via finite element approach, Case Studies in Thermal Engineering, 28, 2021. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain