Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

INFLUENCE OF TEMPERATURE-DEPENDENT CONDUCTIVITY ON CONVECTIVE HEAT TRANSFER IN A VERTICAL DUCT

Volume 45, Issue 1, 2018, pp. 75-91
DOI: 10.1615/InterJFluidMechRes.2018019672
Get accessGet access

ABSTRACT

An analysis has been carried out to study the flow and heat characteristics of a Newtonian fluid in a vertical rectangular duct. One of the vertical walls of the duct is cooled to a constant temperature, while the other wall is heated to constant but different temperature. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are highly non-linear coupled partial differential equations. Numerical solution of the problem is obtained by using finite difference method of second-order accuracy. The effects of various physical parameters such as conductivity parameter BK (-1 ≤ BK ≤ 1.0), Grashof number Gr (1.0 ≤ Gr ≤ 25.0), Brinkman number Br (0.01 ≤ Br ≤ 2.0), and aspect ratio A(0.5 ≤ A ≤ 2.0), which determine the velocity and temperature contours, are shown pictorially. Results are also presented for the skin friction, volumetric flow rate, and heat transfer rate for representative values of different key parameters. It is found that the intensity of the velocity contours is dense in the lower half region of the duct for negative values of conductivity variation parameter and in the upper region of the duct for positive values of conductivity variation parameter. The 3D contours on temperature are concave for negative values of BK and convex for positive values of BK.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain