Library Subscription: Guest
International Journal of Fluid Mechanics Research

Published 6 issues per year

ISSN Print: 2152-5102

ISSN Online: 2152-5110

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.1 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0002 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.33 SJR: 0.256 SNIP: 0.49 CiteScore™:: 2.4 H-Index: 23

Indexed in

Numerical Analysis of Multiphase Mixing - Comparison of First and Second Order Accurate Schemes

Volume 27, Issue 2-4, 2000, pp. 331-362
DOI: 10.1615/InterJFluidMechRes.v27.i2-4.120
Get accessGet access

ABSTRACT

During a severe reactor accident following core meltdown when the molten fuel comes into contact with the coolant water a steam explosion may occur. The steam explosion can be divided into more stages. The first, premixing stage is important since it gives the initial conditions of the possible steam explosion and determines the maximum quantity of melt, which might be then involved into the explosion. To investigate the mixing process associated with the melt penetration a large number of premixing codes has been developed.
The purpose of this work is to analyze the influence of first and second order accurate numerical schemes on the premixing phase simulation results and to find out if a probabilistic treatment of some terms in the multiphase flow equations introduces any advantages. For performing this kind of analysis the simple premixing code ESE has been developed.
With ESE a number of premixing experiments performed at the Oxford University and at the QUEOS facility at Forschungszentrum Karlsruhe has been simulated using the first order accurate upwind method and the second order accurate high-resolution method. The performed analysis showed that the results obtained with the first and second accurate numerical schemes differ and that the probabilistic approach has an almost negligible effect on the simulation results.

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain