Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal of Fluid Mechanics Research
ESCI SJR: 0.206 SNIP: 0.446 CiteScore™: 0.5

ISSN Print: 2152-5102
ISSN Online: 2152-5110

International Journal of Fluid Mechanics Research

DOI: 10.1615/InterJFluidMechRes.v25.i1-3.80
pages 86-97

An Experimental Study of Forced Convective Boiling Heat Transfer of Refrigerants in a Rough Surface Tube

Satoru Momoki
Department of Mechanical Systems Engineering, Nagasaki University, Nagasaki, Japan
H. Shintaku
Institute of Advanced Material Study, Kyushu University, Kasuga, Japan
Jian Yu
Institute of Advanced Material Study, Kyushu University, Kasuga, 816, Japan
Shigeru Koyama
International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan
Toru Shigechi
Department of Mechanical Systems Engineering, Nagasaki University, Nagasaki, Japan
T. Fujii
Institute of Advanced Material Study, Kyushu University, Kasuga, Japan

ABSTRACT

Experiments were carried out on the forced convective boiling heat transfer of refrigerants HCFC22 and HCFC123 inside a tube whose surface was rougher than that of an ordinary smooth copper tube used commercially as heat transfer tube. The local heat transfer coefficients were measured in the range of reduced pressure ratio of 0.07 to 0.23 for mass velocity 300 kg/(m2·s). The measured heat transfer coefficients inside the present tube in annular flow regime are 20−80% higher than those calculated using the authors' previous correlation for an ordinary smooth tube. Once the term representing the nucleate pool boiling heat transfer contribution in this correlation equation is modified by considering the surface roughness effect, the modified equation can correlate the heat transfer coefficients of the present tube within 25% deviations.


Articles with similar content:

Convective Vaporization of Pure Refrigerants in Enhanced and Integral-Fin Tube Banks
Journal of Enhanced Heat Transfer, Vol.1, 1994, issue 4
Neelkanth S. Gupte, Ralph L. Webb
Flow Boiling at Low Mass Flux
International Heat Transfer Conference 12, Vol.41, 2002, issue
V.V. Wadekar, M. E. D. Urso, Geoffrey F. Hewitt
R-22 Condensation in Flat Aluminum Multi-Channel Tubes
Journal of Enhanced Heat Transfer, Vol.7, 2000, issue 6
Jung-Oh Kim, Jin-Pyo Cho, Nae-Hyun Kim
EFFECT OF LUBRICATING OIL ON THE EVAPORATING HEAT TRANSFER AND PRESSURE DROP OF CARBON DIOXIDE IN A MICRO-CHANNEL TUBE
International Heat Transfer Conference 13, Vol.0, 2006, issue
H.-K. Kim, S. Jeong, S. Lee
SODIUM POOL BOILING HEAT TRANSFER
International Heat Transfer Conference 6, Vol.1, 1978, issue
Koichi Hata, Isao Kataoka, Masahiro Shiotsu, Akira Sakurai