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With inverse problems there are often several unknown distributed parameters of which only one may be of interest.
Since assigning incorrect fixed values to the uninteresting parameters usually leads to a severely erroneous model, one
is forced to estimate all distributed parameters simultaneously. This may increase the computational complexity of the
problem significantly. In the Bayesian framework, all unknowns are generally treated as random variables and estimated
simultaneously and all uncertainties can be modeled systematically. Recently, the approximation error approach has
been proposed for handling uncertainty and model-reduction-related errors in the models. In this approach approximate
marginalization of these errors is carried out before the estimation of the interesting variables. In this paper we discuss
the adaptation of the approximation error approach to the marginalization of uninteresting distributed parameters. As
an example, we consider the marginalization of scattering coefficient in diffuse optical tomography.
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1. INTRODUCTION

There are several inverse problems in which there are many unknown distributed parameters. Often, only one or a
subset of the unknowns is of main interest. For example, in hydrogeophysics the unknown distributed parameters
may include permittivity, capillarity, and diffusivity [1, 2]. In diffuse optical tomography (DOT), the most important
distributed parameters are the scattering and absorption coefficients [3]. Of these, at least in biomedical applications,
the absorption coefficient is the one of interest since it is related to the oxygenization level of tissues [4]. In these
applications, the scattering coefficient is considered as a nuisance parameter. The scattering coefficient, however, has
to be estimated simultaneously due to the so-called crosstalk of the coefficients [3].

The simultaneous estimation of two distributed parameters is naturally a more unstable problem than estimating
either of these if the other were known. In addition, with nonlinear problems the convergence of algorithms is a further
problem. With applications which are eventually meant to be almost real time ones, such as biomedical optical tomog-
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raphy, it is of major interest to reduce the computational times as much as possible. Thus, in addition to estimating
the interesting parameters only, there is usually pressure to also use otherwise heavily reduced computational models.

The approximation error approach was introduced in [5, 6] originally to handle pure model reduction errors.
For example, in electrical impedance (resistance) tomography (EIT, ERT) and deconvolution problems, it was shown
that significant model reduction is possible without essentially sacrificing the quality of estimates. With EIT, for
example, this means that very low dimensional finite element approximations can be used. Later, the approach was
also applied to handle other kinds of approximation and modeling errors as well as other inverse problems. Model
reduction, domain truncation, and unknown anisotropy structures in diffuse optical tomography were treated in [7–
10]. Missing boundary data in the case of image processing and geophysical ERT/EIT were considered in [11] and
[12], respectively. In [13–15] the problem of recovery from simultaneous geometry errors and model reduction was
found to be possible.

The approximation error approach was extended to nonstationary inverse problems in [16] in which linear non-
stationary (heat transfer) problems were considered, and in [17] and [18] in which nonlinear problems and state space
identification problems were considered, respectively. The earliest similar but partial treatment within the framework
of nonstationary inverse problems was considered in [19], in which the the boundary data that is related to stochastic
convection diffusion models was partially unknown. A modification in which the approximation error statistics can
be updated with accumulating information was proposed in [20] and an application to hydrogeophysical monitoring
in [21].

From pure model reduction and unknown (nondistributed) parameters or boundary data, a step forward was
recently considered in [22] in which the physical forward model itself was replaced with a (computationally) much
simpler model. In [22], the radiative transfer model (Boltzmann transfer equation), which is considered to be the most
accurate model for light transfer in (turbid) media, was replaced with the diffusion approximation. It was found that
also in this kind of case, the statistical structure of the approximation errors enabled the use of a significantly less
complex model, again simultaneously with significant model reduction for the diffusion approximation. But also here,
both the absorption and scattering coefficients were estimated simultaneously.

The approximation error approach relies on the Bayesian framework of inverse problems, in which all unknowns
are explicitly modeled as random variables [5, 23, 24]. The uncertainty in the unknowns is given in the models and
measurements is reflected in the posterior (probability) distribution. In the Bayesian framework, all unknowns are
subject to inference simultaneously, which often results in excessively heavy computational loads. Generally, Markov
chain Monte Carlo algorithms have to be used to obtain a representative set of samples from the posterior distribution.
Then, after a set of samples has been computed, marginalization over the uninteresting unknowns is trivial. Only
in a few special but important cases, such as the additive error model, some of the uninteresting unknowns can be
eliminated before inference. We refer to such elimination as premarginalization.

In the present paper we consider the approximation error approach in the context of approximate premarginaliza-
tion of uninteresting distributed parameters. Furthermore, we also consider the simultaneous treatment of the errors
that are related to model reduction. As a computational example, we consider the approximate premarginalization of
the scattering coefficient in diffuse optical tomography. This example shows that at least in this case it is possible to
premarginalize over one distributed parameter and successfully estimate another.

The rest of the paper is structured as follows. In Section 2 we give a brief account of the approximation error
approach and its formulation for the case of several distributed parameters. In Section 3 we describe the diffuse
optical tomography problem. In Section 4, numerical examples of reconstructing the scattering coefficient in optical
tomography with different degrees of severity are treated.

2. APPROXIMATION ERROR APPROACH

In the Bayesian framework for inverse problems, all unknowns are treated and modeled as random variables [5, 23, 24].
Once the probabilistic models for the unknowns and the measurement process have been constructed, theposterior
distributionπ(x | y) is accessed, which reflects the uncertainty of the interesting unknownsx given the measurements
y. This distribution can then be explored to answer all questions which can be expressed in terms of probabilities. For
general discussion of Bayesian inference (see, for example, [25, 26]).
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Bayesian inverse problems are a special class of problems in Bayesian inference. Usually, the dimension of a
feasible representation of the unknowns is significantly larger than the number of measurements. Thus, for example,
a maximum likelihood estimate is impossible to compute. Even in cases in which the number of unknowns would be
significantly smaller than the number of measurements, the structure of the forward problem is such that maximum
likelihood estimates would still be unstable. In addition to the instability, the variances of the likelihood model are
almost invariably much smaller than the variances of the prior models. The posterior density is often extremely narrow
and, in addition, may be a nonlinear manifold.

2.1 Marginalization Over Additive Errors

In the approximation error approach, the modeling and other errors are treated as additive errors. Therefore, we review
briefly how the additive errors are formally premarginalized [5]. Let the observation model be

y = Ā(x) + e (1)

wheree are the additive errors andx 7→ Ā(x) is the deterministic forward model. With deterministic we mean that
the modelĀ does not contain any uncertainties or other model errors. Let the jointprior distributionof the unknowns
x ande beπ(x, e). Using the Bayes’ theorem repeatedly, we can decompose the joint distribution of all associated
random variables as

π(y, x, e) = π(y |x, e)π(e |x)π(x) (2)

= π(y, e |x)π(x) (3)

In the case of the additive model (1), the conditional distributionπ(y |x, e) is formally given by

π(y |x, e) = δ(y − Ā(x)− e)

which yields thelikelihood distribution

π(y |x) =
∫

π(y, e |x) de = (4)

=
∫

δ(y − Ā(x)− e)π(e |x) de (5)

= πe | x(y − Ā(x) |x) (6)

and further,1 noting that once the measurements have been obtained,π(y) > 0 is a fixed normalization constant, we
have the posterior distribution

π(x | y) ∝ π(y |x)π(x) (7)

= πe | x(y − Ā(x) |x)π(x) (8)

In the quite common case of mutually independentx ande, we haveπe | x(e |x) = πe(e). Furthermore, ife and
x are normal, we can writeπ(e) = N (e∗, Γe) andπ(x) = N (x∗, Γx) and we have the familiar form

π(x | y) ∝ exp
(
−1

2
(‖Le(y − Ā(x)− e∗)‖2 + ‖Lx(x− x∗)‖2

))
(9)

whereLT
e Le = Γ−1

e andLT
x Lx = Γ−1

x , for the posterior distribution. In the above, the unknown (uninteresting)
additive errore waspremarginalized, that is, marginalized before the inference procedure, and is not present in (8) or
(9).
1The subscripts, such ase |x in πe | x, are used to determine the actual probability density function. If the arguments, however,
coincide with the density, we drop the subscripts. For example, we writeπx(x) = π(x) andπe | x(e |x) = π(e |x), but retain the
subscript inπe | x(y − Ā(x) |x). Furthermore, we use the terms density and distribution interchangeably.

Volume 1, Number 1, 2011



4 Kolehmainen et al.

2.2 Approximate Premarginalization Over Model Reduction Related Errors and Other Uncertainties

The problem that is generally related to uninteresting auxiliary unknownsξ is that we usually cannot perform pre-
marginalization such as in Eqs. (5) and (6). In most cases we have to estimate bothx andξ, which may be a con-
siderably more demanding undertaking than estimating justx whenξ were known. For example, if a Markov chain
Monte Carlo (MCMC) approach were used, the marginalization overξ can only be done after running the chain for
bothx andξ. Once this is carried out, however, the marginalization overξ is trivial. For MCMC methods in general
(see, for example, [27, 28]). For MCMC and inverse problems, see [29–31] for applications to EIT. In this section we
discuss the computational procedure in more detail in the case in which there are two distributed parameters of which
premarginalization over the other one is to be carried out.

Now let the unknowns be(x, z, ξ, e), where againe represents additive errors andξ represents auxiliary uncer-
tainties such as unknown boundary data, and(x, z) are two distributed parameters of whichx is of interest only. The
accurate forward model

(x, z, ξ) 7→ Ā(x, z, ξ) (10)

is usually a nonlinear one. The uncertaintiesξ can sometimes be modeled to be mutually dependent with(x, z),
especially whenξ represents boundary data on the computational domain boundary and(x, z) are modeled as random
fields. On the other hand, ifξ represents an unknown boundary shape,ξ might be modeled as mutually independent
with (x, z). In the following we consider the case in which the noisee is additive and the unknowns(x, z, ξ) are not
necessarily mutually independent.

Let

y = Ā(x̄, z, ξ) + e ∈ Rm

denote an accurate model for the relation between the measurements and the unknowns,2 and lete be mutually
independent with(x, z, ξ).

In the following we approximate the accurate representation of the primary unknownx̄ by x = Px̄, whereP
is typically a projection operator. Letπ(x, z, ξ, e) be a feasible model for the joint distribution of the unknowns. We
identify x = Px̄ with its coordinates in the associated basis when applicable.

In the approximation error approach, we proceed as follows. Instead of using the accurate forward model
(x̄, z, ξ) 7→ Ā(x̄, z, ξ)with (x̄, z, ξ) as the unknowns, we fix the random variables(z, ξ)← (z0, ξ0)and use a com-
putationally (possibly drastically reduced) approximative model

x 7→ A(x, z0, ξ0)

Thus, we write the measurement model in the form

y = Ā(x̄, z, ξ) + e (11)

= A(x, z0, ξ0) +
[
Ā(x̄, z, ξ)−A(x, z0, ξ0)

]
+ e (12)

= A(x, z0, ξ0) + ε + e (13)

where we define theapproximation errorε = ϕ(x̄, z, ξ) = Ā(x̄, z, ξ)− A(x, z0, ξ0). Thus, the approximation error
is the discrepancy of predictions of the measurements (given the unknowns) when using the accurate modelĀ(x̄, z, ξ)
and the approximate modelA(x, z0, ξ0). Note that (13) is exact.

Formally, after the models̄A andA are fixed, we haveπ(ε | x̄, z, ξ) = δ[ε−ϕ(x̄, z, ξ)]. We will later, however,
employ approximative joint distributions and therefore considerπ(ε, x̄, z, ξ) without any special structure. As the first
approximation, we approximateϕ(x̄, z, ξ) ≈ ϕ(Px, z, ξ) and thusπ(ε | x̄, z, ξ) ≈ π(ε |Px, z, ξ). This means that
we assume that the model predictions and thus the approximation error is essentially the same forx̄ asx = Px̄. This
assumption holds for inverse problems in general and for such projections in particular.

2If there are no additive errors, we writee = 0 and consider the other types of errors to be included inξ.
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Proceeding as in Section 2.1, we use the Bayes’ formula repeatedly

π(y, x, z, ξ, e, ε) = π(y |x, z, ξ, e, ε)π(x, z, ξ, e, ε) = δ[y −A(x, z0, ξ0)− e− ε]π(e, ε |x, z, ξ)π(z, ξ |x)π(x)
= π(y, z, ξ, e, ε |x)π(x)

Hence,

π(y |x) =
∫∫∫∫

π(y, z, ξ, e, ε |x)de dε dz dξ =
∫∫

δ[y −A(x, z0, ξ0)− e− ε]

·
[∫∫

π(e, ε |x, z, ξ)π(z, ξ |x)dz dξ

]
de dε =

∫∫
δ[y −A(x, z0, ξ0)− e− ε]π(e, ε|x)de dε

=
∫

πe[y −A(x, z0, ξ0)− ε]πε|x(ε |x) dε (14)

sincee andx are mutually independent, and (14) is a convolution integral with respect toε. In particular, sincee is
mutually independent with(x, z, ξ), e andε are also mutually independent.

At this stage, in the approximation error approach, bothπe andπε|x are approximated with normal distributions.
Let the normal approximation for the joint densityπ(ε, x) be

π(ε, x) ∝ exp

{
−1

2

(
ε− ε∗
x− x∗

)T (
Γεε Γεx

Γxε Γxx

)−1 (
ε− ε∗
x− x∗

)}
(15)

Thus we write
e ∼ N (e∗,Γe), ε |x ∼ N (ε∗,x,Γε|x)

where

ε∗,x = ε∗ + ΓεxΓ−1
xx (x− x∗) (16)

Γε|x = Γεε − ΓεxΓ−1
xx Γxε (17)

Define the normal random variableν so that3 ν |x = e + ε |x
ν |x ∼ N (ν∗|x,Γν|x)

where

ν∗|x = e∗ + ε∗ + ΓεxΓ−1
x (x− x∗) (18)

Γν|x = Γe + Γε − ΓεxΓ−1
x Γxε (19)

Thus, we obtain for the approximate likelihood distribution

y |x ∼ N [y −A(x, z0, ξ0)− ν∗|x,Γν|x]

Since we are after computational efficiency, a normal approximation for the prior model is also conventionally
used:

x ∼ N (x∗,Γx)

Thus, we obtain the approximation for the posterior distribution

π(x | y) ∝ π(y |x)π(x) ∝ exp
[
−1

2
V (x)

]

3With autocovariances, we may notateΓxx = Γx below.
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whereV (x) is the posterior potential

V (x) = [y −A(x, z0, ξ0)− ν∗|x]TΓ−1
ν|x[y −A(x, z0, ξ0)− ν∗|x] + (x− x∗)TΓ−1

x (x− x∗) (20)

= ‖Lν|x[y −A(x, z0, ξ0)− ν∗|x]‖2 + ‖Lx(x− x∗)‖2 (21)

whereΓ−1
ν | x = LT

ν|xLν|x andΓ−1
x = LT

x Lx.

2.3 Computational Considerations

In Section 2.2, we wrote the normal approximation (15) for the joint distribution of(x, ε). Generally, this approxi-
mation is done to make an efficient computation of the maximum a posteriori (MAP) estimate feasible. If the actual
prior model is normal, the marginal distribution ofx induced by (15) coincides with the actual prior model. The prior
modelπ(x̄, z, ξ) does not, however, have to be jointly normal and neither, in particular, does the marginal prior model
π(x̄). In practice, whatever the prior modelπ(x̄, z, ξ) is, a set of samples(x̄(`), z(`), ξ(`)) is usually to be drawn and
the approximation errors

ε(`) = ϕ(x̄(`), z(`), ξ(`)) = Ā(x(`), z(`), ξ(`))− Ā(x(`), z0, ξ0) , ` = 1 . . . nsamp

are then to be computed, wherensamp is the number of draws. The normal approximation forπ(ε, x) is then formed
by settingx(`) = Px̄(`) and computing the mean and joint covariance as sample averages over the ensemble.

In theenhanced error model, one neglects the cross covariance and setsΓεx = 0 (see, for example, [5]). With
the enhanced error model and nonlinear forward problems, we need to estimate the covarianceΓε practically always
by simulations and sample averages. If the prior modelπ(x̄) is Gaussian, however, the covarianceΓx̄ is available in
the first place and in principle, would, not have be computed as a sample average.

Irrespective of what the (original) prior model for the primary unknown is, we note the following: When the
cross covariancesΓεx are employed, the sample average has to be used in practice also forΓx. Although the prior
model covarianceΓx̄x̄ would yield a “better estimate” for the covariance of the reduced order covarianceΓx than a
sample covariance, we might be forced to use the latter because when the sample covariance is computed, the term
Γεε − ΓεxΓ−1

x Γxε is guaranteed to be non-negative definite. If, in addition,Γe has full rank,Γν|x is guaranteed to be
positive definite and the Cholesky factorLν|x exists. But if the prior model covarianceΓx = PΓx̄x̄PT is used, this
condition is not generally met. By the law of large numbers, the condition is met asymptotically but it is impossible
to specify a safe sample size. From the point of view of numerical stability, this is a problem especially when the
approximation errors clearly dominate the additive errors, that is, the case for which the approximation error approach
is targeted in the first place. It is thus advised to use the sample covariance estimate also forΓx.

It is difficult to predict how many draws are needed to compute the mean and joint covariance for(x, ε). Loosely
speaking, this depends generally on (the covariances of) the modelπ(x, z, ξ) and the degree of nonlinearity of̄A.
With relatively small covariances, few draws seem to be enough (see, for example, [12]). In the approximation error
approach, the bottleneck is the computation of the solutions of the full accurate forward modelĀ(x̄, z, ξ). As for
using the full accurate forward model in the inversion with nonlinear problems, we, of course, have to compute this
model along the iteration, but also typically compute the related Jacobian mapping. Thus, the overhead that is related
to the computation of the approximation error statistics often corresponds to the computation of a few MAP estimates
with the full accurate model.

3. DIFFUSE OPTICAL TOMOGRAPHY

Diffuse optical tomography (DOT) is a noninvasive imaging modality in which images of the optical absorption and
scattering within turbid media are derived based on measurements of near-infrared light on the surface of the body (for
reviews see [3, 32]). The DOT problem is an exceptionally challenging inverse problem due to the diffuse nature of
the forward model, and also since the measurements can span 10 orders of magnitude. Furthermore, there are several
unknown distributed parameters involved, of which theabsorption coefficientand the(reduced) scattering coefficient
are usually reconstructed. Both coefficients are usually measured inmm−1.
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The applications of DOT include the detection and classification of tumors from breast tissue, monitoring of
infant brain tissue oxygenation level, and functional brain activation studies. For reviews on clinical applications
(see [4, 33]). The absorption coefficient, which is related to the oxygenation level of blood, is usually the interesting
parameter. In most applications, the scattering coefficient is considered a nuisance parameter. In this paper, our task
is thus to employ the approximation error approach for approximate premarginalization over the inhomogeneous
scattering coefficientz(~r) and reconstruct only the inhomogeneous absorption coefficientx(~r).

In the numerical examples below, we consider cases in which there are no auxiliary unknownsξ of any type.
Thus, we only have the uninteresting distributed parameterz and additive measurement noise to deal with.

3.1 Measurements in Optical Tomography

In the experimental setup of DOT,ms optical fibers are placed on the source positions (surface patches)∂Ωs,k ⊂ ∂Ω
on the boundary of the bodyΩ. The measurements are obtained throughmd optical fibers that are placed in the
detector positions (surface patches)∂Ωm,i ⊂ ∂Ω. A collection of measurements is formed by turning on the sources
one at a time and measuring the light intensity at all measurement locations (for each source). The measurements in
DOT may consist of direct intensity measurements, frequency-modulated amplitude and phase shift measurements,
or time-resolved impulse response measurements.

In this paper, we consider the frequency domain measurement system. In the frequency domain measurements
light from a sinusoidally modulated laser source is guided via the optic fibers to one of the source locations∂Ωs,k

at a time, and the amplitudes and phase shifts of the transmitted light are measured on all the detector locations
∂Ωm,i, i = 1, . . . , md. The measurement vector is thusy ∈ Rm with m = msmd. The inverse problem in DOT is
to estimate a pair of functions(x, z), representing the (spatially inhomogeneous) optical absorption coefficientx(~r)
and the scattering coefficientsz(~r) of the tissues inΩ, given the measurementsy and the forward model for the
measurement process and noise.

3.2 Forward Model

In the context of inverse problems, the modelx 7→ A(x) is referred to as theforward model. We consider DOT
simulations in a diffusive regime where the bodyΩ consists of turbid, scattering dominated media. In such cases the
light transport is commonly modeled with the diffusion approximation (DA) of the radiative transfer equation (RTE)
[3]. The diffusion approximation is also used as transport model in this paper. For further details on the derivation and
properties of the transport models and boundary conditions (see [3, 34, 35]).

We consider the frequency domain system below. Let the light source∂Ωs,k be on andΦk(~r, ω) be the induced
photon density at~r, whereω is the modulation frequency of the light source. The frequency domain version of the
diffusion approximation with the Robin boundary condition is of the form [3, 35]

−∇ ·D(~r)∇Φk(~r, ω) + x(~r)Φk(~r, ω) +
iω
c

Φk(~r, ω) = 0, ~r ∈ Ω (22)

Φk(~r, ω) + 2ζD(~r)
∂Φk(~r, ω)

∂ν
= gk(~r, ω) ~r ∈ ∂Ω (23)

where
D(~r) =

{
3[x(~r) + z(~r)]

}−1

whereD (units [mm]) is the diffusion coefficient,c is the speed of light in the medium,ζ is a parameter that describes
reflection on the boundary,ν is the outward normal vector at∂Ω, andgk(~r, ω) is the boundary source term for source
at∂Ωs,k,

gk(~r, ω) =

{
I on ∂Ωs,k

0 on ∂Ω \ ∂Ωs,k

(24)

whereI is the intensity of the source. The complex-valued fluxρi,k(ω) at the measurement site∂Ωm,i can be written
as the surface integral
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ρi,k(ω) =
∫

∂Ωm,i

1
2ζ

Φk(~r, ω) dS (25)

The collection{ρi,k}, k = 1, . . . ,ms, i = 1, . . . , md is the raw data for the experiment. For numerical reasons,
primarily for the range of measurements, transformed data and the correspondingly transformed forward model are
typically used. Furthermore, the measurement systems are constructed according to these transformations. The exper-
imental systems for frequency domain optical tomography export the log-amplitude and phase shift of the complex
valued (demodulated) raw data. Thus, the measurements can be written

y =
(

Re log(ρ)
Im log(ρ)

)
∈ R2m (26)

and the forward model is transformed accordingly. For different end uses, data with different frequenciesω may be
acquired.

For the numerical realization of the diffusion approximation model (22)–(24), the finite element method (FEM)
is typically used (see, for example, [3, 7]). In the FEM approximation, photon density is approximated in a finite
dimensional basis as

Φh(~r) =
Nn∑

i=1

αiϕi(~r) (27)

whereϕi(~r) are the nodal basis functions of the finite element mesh andNn is the number of nodes in the FEM mesh,
andh is mesh element size parameter.

The absorption and scattering coefficients are written as finite dimensional approximations

x(~r) =
np∑

j=1

xjχj(~r) , z(~r) =
np∑

j=1

zjχj(~r) (28)

whereχj denotes characteristic functions of disjoint elements in the reconstruction mesh. In the following, we identify
the absorption and scattering coefficients and their representations as the coordinates

x = (x1, . . . , xnp)T ∈ Rnp , z = (z1, . . . , znp)T ∈ Rnp

Thus, the solution of the forward problem amounts to the solution ofms complex valuedNn × Nn systems of
equations for one DOT experiment. The FEM-based forward model is thus of the form

y = Ah(x, z) (29)

whereh refers to the discretization level parameter in (27).

3.3 Gaussian MRF Prior Model for Scattering and Absorption Coefficients

In the following, we model(x, z) as mutually independent. As the prior model for bothπ(x) andπ(z), we used a
proper Gaussian smoothness prior, constructed similarly as in [5, 7, 8]. In this construction, the distributed parameter,
sayx, is considered in the form

x(~r) = xin(~r) + xbg(~r)

wherexin(~r) is a spatially inhomogeneous (absorption) coefficient4 with zero mean, andxbg(~r) is a spatially homo-
geneous (background) absorption coefficient with nonzero mean. For the latter, we can writexbg(~r) = qI, whereI is
a vector of ones andq is a scalar random variable with distributionq ∼ N (x∗, σ2

bg,x). With respect to the basis for
x, we have the coordinatesxin ∈ Rnp , I ∈ Rnp , and setxin ∼ N (0,Γin). We model the spatial distributionsxin and

4In the sequel, “in” refers to inhomogeneous, “bg” to background.
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qI as mutually independent, that is, the background is mutually independent with the inhomogeneities. An equivalent
construction forz was considered.

Thus, we have theΓx = Γin,x + σ2
bg,xIIT, Γz = Γin,z + σ2

bg,zIIT and

π(x) = N (x∗I, Γx) , π(z) = N (z∗I,Γz)

In the construction ofΓin,x andΓin,z, the approximate correlation lengths can be adjusted to match the size of the
expected inhomogeneities. (See [5, 7, 8] for details.)

This prior model is a proper distribution, that is, the covariance exists. Traditional smoothness prior models are
improper and samples cannot be drawn from such distributions. The approximation error approach, on the other hand,
is based on computing the statistics ofε over the prior distribution. This is not possible with a prior of unbounded
variances.

In [7] it was found that such a specific construction for the prior model for scattering and absorption coefficients
was exceptionally suitable. This was the case even without the variable background. In [8], the prior described above
with the variable background was shown to be feasible also for real data.

4. NUMERICAL STUDIES

We evaluate the approximate premarginalization by the approximation error approach with three two-dimensional
numerical examples. In the first one, we study only the errors that are related to marginalization over the scattering
coefficient using an otherwise accurate forward modelĀ(x, z0). Thus, numerical model reduction errors are not
present. The second example is similar, but the prior model for the scattering coefficient is somewhat off in the sense
that the actual background of scattering differs from the modeled one inĀ(x, z0). In the third example, the numerical
model reduction is included, that is, we use the modelA(x, z0).

In the following we explain the common details for the numerical examples.

4.1 Computational Forward Models and Prior Model

In the numerical studies, the domainΩ ⊂ R2 is a circle with radius 25 mm. The measurement setup consists of
ms = 32 sources andmd = 32 detectors, located at equispaced intervals on the boundary∂Ω. With this setup, the
number of log-amplitude and phase measurements is2m = 2048.

The simulated measurement data is computed with the FEM approximation of the diffusion approximation model
in a meshM1 which is dense enough to consider the solution as the solution of the problem (22)–(24). Two other
finite element meshes and models are constructed, the (relatively) accurate[M2, Ā(x, z)] and the radically reduced
one[M3, A(x, z)] (see Table 1). The actual simulated measurement data was obtained by adding mutually indepen-
dent (non-identically distributed) noiseσe,j = δ|y∗,j |/100 with δ = 0.5, that is, the error level was 0.5% of the
respective noiseless measurement. Thus, the (instrument) noise is additive and independent, identically distributed,
but the individual variances are not equal, that is, the covarianceΓe is diagonal but the diagonal entries are not equal.

For the reconstruction basis in (28) for the coefficients(x, z) in the inverse problem, we divide the domainΩ into
np = 1904 square pixels for both the accurate and approximate models. Thus we haveP = I, x̄ = Px = x, and the
parameter vectors̄x, z ∈ R1904. HavingP : Rn 7→ Rm wherem ¿ n has an impact mainly whenm is very small,

TABLE 1: The FEM meshes used in the simulations:Nn

is the number of nodes andNe is the number of triangular
elements in the mesh.

Mesh Use Nn Ne

M1 Simulation of measurements12,853 25,326
M2 Accurate forward model 11,329 22,302
M3 Reduced forward model 703 1326
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and less with havingm ¿ n. An exception is poor (initial) modeling, that is, if the accurate representationx̄ is a poor
approximation for the reality.

The prior model was constructed as in Section 3.3. The parameters for the prior distribution are given in Table 2.
Elementwise, this means that the values of absorption and scatter coefficients are expected to lie within the two
standard deviation intervalsx∗ ± 2σx and z∗ ± 2σz with probability of 95%, with respect to the marginal prior
distributions.

Two draws from the prior modelsπ(x) andπ(z) are shown in Fig. 1. In the draws, the variation of the background
that was part of the construction of the prior model is clearly visible.

4.2 Estimates and Approximation Error Statistics

We compute MAP estimates only by minimizing the respective posterior potentials. The following particular estimates
are computed in the three test cases:

TABLE 2: The parameters for the prior model:
means and the standard deviationsσ for the homo-
geneous background and inhomogeneities. The cor-
relation length for both coefficients was set as 8 mm.

x∗ 10.0 · 10−3 mm−1

σbg,x 1.2 · 10−3 mm−1

σin,x 3.0 · 10−3 mm−1

z∗ 1000 · 10−3 mm−1

σbg,z 120 · 10−3 mm−1

σin,z 300 · 10−3 mm−1

0.001 0.03 0.01 3   

0.001 0.03 0.01 3   

FIG. 1: Two draws from the prior distribution: (left) absorption coefficientsx(~r) and (right) scattering coefficient
z(~r).
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1. MAP-REF—Maximum a posteriori estimate for both parameters(x, z) with the conventional error modely =
Ā(x, z) + e. This estimate is obtained by computing

min
x,z

{‖Le[y − Ā(x, z)− e∗]‖2 + ‖Lx(x− x∗)‖2 + ‖Lz(z − z∗)‖2
}

(30)

and can be considered as a reference estimate in which both distributed parameters are estimated simultaneously.

2. MAP-CEM—Maximum a posteriori estimate for the primary unknownx using fixedz = z∗ and conventional
error modely = Ā(x, z∗) + e, corresponding to

min
x

{‖Le[y − Ā(x, z∗)− e∗]‖2 + ‖Lx(x− x∗)‖2
}

(31)

3. MAP-AEM—Maximum a posteriori estimate forx using fixedz = z∗ and the approximation error model,
corresponding to

min
x

{‖Lν|x[y − Ā(x, z∗)− ν∗|x]‖2 + ‖Lx(x− x∗)‖2
}

(32)

In the above functionals, when the reduced-order model is used, the modelĀ(x, ·) is to be substituted byA(x, ·) [see
the posterior potentialV (x) in (21)].

In the following numerical examples, the realizationz∗ is the mean of the prior modelπ(z). The estimates
(30)–(32) are computed with the Gauss–Newton optimization method with an explicit line search [36].

For the construction of the approximation error statistics, we proceed as follows. The statistics were used only
with MAP with the approximation error model (MAP–AEM) and were computed to correspond to the employed
forward model. The means and covariances for(x, ε) in the approximation error model (15) were estimated by Monte
Carlo simulation. For this, we draw the sets of samples{x(`), ` = 1, . . . , nsamp} and{z(`), ` = 1, . . . , nsamp} from
the prior modelsπ(x) andπ(z), respectively. Using the sets of samples, the realizations of the approximation error
are computed as

ε(`) = Ā(x(`), z(`))− Ā(x(`), z0) , ` = 1 . . . nsamp

for the case whereε is due to using fixedz = z0 only, that is, no model reduction errors are present, and

ε(`) = Ā(x(`), z(`))−A(x(`), z0) , ` = 1 . . . nsamp

for the cases in which both errors from model reduction and using fixedz = z0 are present. The meansx∗ andν∗|x
and the covariancesΓx andΓν|x are then estimated as sample averages using the samples{x(`), ε(`), ` = 1 . . . nsamp}.
In the following examples, we use sample sizensamp = 20, 000.

4.3 Reconstructions

We have three different parametersz: zbg,actual is the actual (unknown distributed) parameter,z∗ is the mean of the
modeled prior distribution, andz0 is the fixed value ofz used in the posterior model. Bothz0 andz∗ can be chosen
separately and we do not need to havez0 6= z∗. Technically, it is possible to optimizez0, but this is not considered
here.

Three reconstruction cases are considered: case 1—marginalization overz only with z0 = z∗, and furthermore,
z0 = zbg,actual; case 2—as in Case 1 but withz0 6= zbg,actual to assess the robustness toward the poor choice of
z0; and case 3—both marginalization overz and numerical model reduction errors are present. The actual spatial
distributions forx andz are blocky targets in a homogeneous background. The probability of the actualx andz with
respect to the prior models is relatively low since they are discontinuous (see top row of any of Figs. 2–4). This is one
of the ways to check the robustness of the approximation error approach against prior model design.

Case 1: Modeling errors caused by using a fixed value forz.—The results for case 1 are shown in Fig. 2. The
actual coefficients(x, z) are shown in the top row. The background values of the target distributions coincide with the
prior means. In particular,zbg,actual = z0.
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Parameters Measurement model x (mm−1) z (mm−1)

Actual

0.002 0.02 0.25 2   

(x, z) Ā(x, z) + e

0.005 0.017 0.03 1.91

x Ā(x, z0) + e

0    0.036

z0 = 1mm−1

x Ā(x, z0) + e + ε

0.006 0.015

z0 = 1mm−1

FIG. 2: Case 1. Rows from top to bottom: actual distributions, MAP-REF estimate (30) for(x, z), MAP-CEM
estimate (31) forx using fixedz0 = z∗ and conventional noise model, and MAP-AEM estimate (32) using fixed
z0 = z∗ and the approximation error model. The modeling error in MAP-CEM and MAP-AEM is caused solely by
using the (incorrect) fixed valuez0 = z∗. Herezbg,actual = z∗ = z0.

The reference estimates MAP-REF for(x, z), computed by minimization of (30), are shown in the second row.
The estimates are computed using the accurate forward modelĀ(x, z), meaning that there are no discretization-related
errors present. The MAP estimate with the conventional error model (MAP-CEM) estimate (31) forx, using the fixed
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valuez = z∗ for the scattering and the conventional noise modely = Ā(x, z∗) + e, is shown in the third row. As can
be seen, the use of incorrect valuez∗ (which is here equivalent to the background scatter) has effectively destroyed the
reconstruction of the absorption coefficientx, although the actualz differs from the modeledz0 only in three small
subdomains.

The fourth row shows the MAP-AEM estimate (32) forx using the same fixedz = z∗ and the approximation
error modely = Ā(x, z∗)+ε+e. The estimate for the absorption is similar to the MAP-REF estimate, but the circular
targets are slightly more blurred and the values of the inhomogeneous targets are slightly more off the actual values
than with the MAP-REF. This is unavoidable in most cases, since the inclusion of the statistics of the approximation
errors increases the variances of their likelihood, which in turn drives the estimates toward the mean of the prior
model.

Case 2: Tolerance against poor choice ofz0.— The results for case 2 are shown in Fig. 3. The estimates are co-
mputed and arranged as in Fig. 2, the only difference being that in Fig. 3 the actual background value of the scattering
target inzbg,actual = 1.5z0, the discrepancy of which corresponds to1.5σz with respect to the prior model.

The decrease of the quality of the MAP-REF is due to using a poor model for the prior (background) mean only.
This is still a reasonable estimate showing all five objects of the actual spatial distributions. The MAP-CEM estimate
is completely useless.

The reconstruction quality in the MAP-AEM estimate is similar to that in Fig. 2. This means that a1.5σz un-
derestimation of the scattering coefficient in the modelA(x, z0) is tolerated well. We also tested a case where the
background of the scattering target was−1.5σz and±2σz away from the meanz0. The MAP-AEM estimate ofx re-
mained similar to the estimate shown in bottom row in Fig. 3, except in the casezbg,actual = z0−2σz. In this case, the
quality of the MAP-AEM estimate decreased significantly, producing a nearly useless estimate. Such misspecification
of the background is not expected in practice, since the estimation of the best spatially homogeneous estimates forx
andz can be done readily if the approximate background values are not known (see [8]). Based on these numerical
tests, the approximate premarginalization with respect to the unknown scattering parameterz is reasonably tolerant
against a discrepancy between the prior model and the fixedz = z0.

Case 3: Combined approximation error caused by fixedz = z∗ and model reduction.— The results for case 3
are shown in Fig. 4. The estimates are computed from the same data that was used in Fig. 2. The only difference
between case 1 and case 3 is that in case 3 the estimates are computed using the reduced forward modelA(x, z0),
with the number of nodes in the FEM approximation beingNn = 1326, instead ofNn = 22, 302 in the accurate
modelĀ(x, z0).

The reference estimate MAP-REF for both unknowns(x, z) was destroyed by the unaccounted for approximation
error caused by use of the reduced FEM model. As with case 2, the MAP-CEM estimate is again useless. On the other
hand, the MAP-AEM estimate with the proposed approach remained similar to case 1, showing that simultaneous
recovery from the use of an incorrect fixed value ofz and model-reduction-related errors is feasible with the proposed
approach.

We did not consider any auxiliary uncertaintiesξ in the above example. In DOT, the principal candidate forξ

is poorly known exterior geometry, but there are also other topics. In clinical applications of optical tomography in
particular, the actual optode locations might be slightly off the modeled locations. Furthermore, the channel amplifi-
cations can only be calibrated up to a constant with, which constant is difficult to estimate.

5. CONCLUSIONS

In this paper we applied the recently proposed approximation error approach for approximate premarginalization
of uninteresting distributed parameters. The approximation error approach is based on the Bayesian framework for
inverse problems. The approximation error approach has earlier been shown to be able to deal with diverse types
of approximation and modeling errors and uncertainties, such as those related to pure model reduction, unknown
boundary data, mismodeled geometry, and use of approximative physical models.

We considered the special case of approximate premarginalization over the inhomogeneous scattering coefficient
in diffuse optical tomography. This is an example of a problem in which there are two or more unknown distributed
parameters, of which only one is of interest. The results for this example problem suggest that the approximation error
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Parameters Measurement model x (mm−1) z (mm−1)

Target

0.002 0.02 0.25 2   

(x, z) Ā(x, z) + e

0.004 0.016 0   2.20

x Ā(x, z0) + e

0   0.12

z0 = 1mm−1

x Ā(x, z0) + e + ε

0.003 0.016

z0 = 1mm−1

FIG. 3: Case 2. Misspecification ofz0. Rows as in Fig. 2. The modeling error in MAP-CEM and MAP-AEM is
caused solely by using a fixed valuez = z0. Herezbg,actual = z∗ + 1.5σz = z0 + 1.5σz.

approach is able to compensate for using an incorrect fixed value for the uninteresting distributed parameter. In this
particular example, the premarginalization was carried over the scattering coefficient, as well as the errors related to
simultaneous reduction of the computational forward model. It was also shown that at least in the studied cases, the
approach is tolerant to a reasonable misspecification of the fixed scattering coefficient.
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Parameters Measurement model x (mm−1) z (mm−1)

Actual

0.002 0.02 0.25 2   

(x, z) A(x, z) + e

0    0.026 0   2.46

x A(x, z0) + e

0    0.040

z0 = 1mm−1

x A(x, z0) + e + ε

0.006 0.016

z0 = 1mm−1

FIG. 4: Case 3. Rows as in Fig. 2. The modeling error in MAP-CEM and MAP-AEM is caused by using a fixed
valuez = z0 and the reduced-order modelA(x, z0) for the forward problem. Herezbg,actual = z∗ = z0.
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