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The goal of this paper is to illustrate how two significance indices—the frequentist p-value and Bayesian e-value—
have a straight mathematical relationship. We calculate these indices for standard statistical situations in which sharp
null hypotheses are being tested. The p-value considered here is based on the likelihood ratio statistic. The existence of
a functional relationship between these indices could surprise readers because they are computed in different spaces:
p-values in the sample space and e-values in the parameter space.
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1. INTRODUCTION

This paper relates two significance indices: thep-value ande-value,p for probability ande for evidence. The main
objective of these indices is to measure the consistency of data with a sharp null hypothesisH (A representing the
alternative). As heuristic definitions of the indices, we could say the following: thep-value is the probability of the set
of points of the sample space that has densities smaller than the actual sample computed underH; thee-value is the
posterior probability of the set of points of the parameter space that has posterior densities smaller than the maximal
density withinH.

The frequentistp-value has a long history because it appeared in the statistical literature. [1–3] seem to be the first
to use the concepts of “tail” and “more extreme” sample points—now included in almost every statistics textbook.
Their definition ofp-value is the probability, under the null hypothesis, that the test statistic would take a value at least
as extreme as the one in fact observed. More recently, [4, 5] strongly advocated the use ofp-values as proper indices
to evaluate significance.p-values have been by far the most used statistical tool in all fields of science.

The history of the Bayesiane-value is recent, being introduced by [6] and reviewed extensively by [7]. It has been
applied in different fields, [8–10].

The comparison of frequentist to Bayesian tests is made by [11–13]. In these works,p-values are compared to
Bayes factors. Usually, papers comparing Bayesian and classical tests reach the conclusion for accept/reject rules
(see, for instance, [14]). A decision-theoretical approach to significance testing is developed by [15]. Here we are
looking exclusively for the values of the significance indices,p- ande-values.

There is a clear duality betweenp- ande-values: while the former is a tail evaluation of the sampling distribution
under the null hypothesis, the latter is a tail evaluation of the posterior distribution conditional on the actual sample
observation. Furthermore, while the tail forp-value evaluation starts at the observed statistic value, the tail fore-value
starts at the sharp null hypothesis. In other words, thep-value is the tail fromx givenH volume, while thee-value is
the tail fromH givenx volume. More detailed definitions of both indices and examples are provided in the sequel.
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We call the reader’s attention to the way a tail should be defined. To have a meaningful concept of more extreme
sample (parameter) points, an order must be defined in the sampling (parameter) space. We consider the order based
on the likelihood ratioλ [posterior densityπ(θ)]: a sample pointy is more extreme thanx if λ(y) < λ(x) [parameter
θ2 is more extreme thanθ1 if π(θ2) < π(θ1)]. As seen in [16] and [17], the likelihood ratio functionλ (the posterior
densityπ), defines a natural order on the sample (parameter) space, regardless of the dimension of the space. One
should note that these orders do take into account the alternative hypothesisA to the null hypothesisH. Figures 1 and
2 illustrate this discussion displaying the two tails for the binomial with sample sizen = 10, observationx = 3, and
null hypothesisH : θ = 1/2.

The above considerations suggest that there is a strong connection betweenp ande. Such a relation would depend
on the chosen prior and on the dimension of the two spaces considered, sampling and parameter spaces. To fairly
compare the indices, we use noninformative priors fore-values and the likelihood ratio statistic forp-values.

While searching for an analytical relation between the indices, we realized that a possible function would be model
dependent, as the examples presented confirm. Some surprising results are shown, particularly for multiparameter
cases.

Section 2 presents the background, notation, and definitions. Also, some illustrative examples are provided. Sec-
tion 3 presents our conjectures about promising relations betweenp- ande-values. More examples are given in Sec-
tions 4 and 5, where intriguing problems are discussed. Finally, Section 6 provides additional comments and discus-
sion.

2. MOTIVATION AND DEFINITIONS

For motivation, we consider a standard illustration: the normal mean test with variance equal to 1. Lett = 3.9 be
the observed value of the minimal sufficient statistic: the sample mean forn = 3 observations. Suppose that the null
hypothesis to be tested isH : µ = 5. Regard the normalized likelihood function as a normal density with mean equal
to 3.9 and variance equal to1/3. Recall that the sampling density underH is a normal distribution with mean 5 and
variance1/3. Thep-value is 0.0567, twice the area of the tail starting att = 3.9. Surprisingly, twice the area of the
tail that starts atµ = 5, in the posterior distribution, also equals 0.0567,p = e. This result is a consequence of the fact
that the normal density depends ont andµ only on(t− µ)2.

Consider now a binomial sampling distribution withn = 10 and observationx = 3. The interest is to test
H : θ = 1/2 vs. A : θ 6= 1/2. Figures 1 and 2 illustrate the two kinds of tails discussed. Recall that in this case

FIG. 1: Binomial sampling: posterior density undern = 10 andx = 3.
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FIG. 2: Binomial sampling: posterior density undern = 10 andx = 3.

the normalized likelihood is a beta density with parameter(4, 8). Thep-value is 0.109375 or 0.343750, depending on
the observationx = 3 being or not deemed to be extreme. On the other hand, thee-value is the sum of the right and
left areas,P [θ > 0.5|x = 3] + P [θ < 0.14172|x = 3] = 0.11328 +0.0582 = 0.17148. A curious fact is that twice
this 0.11328 right tail area equals exactly the average of the twop-values: the one that includesx = 3 and the other
excluding it.

The two examples above illustrate thatp ande may be, to some extent, functionally related even when they have
different values. The aim of this paper is to investigate their relation in several particular cases and to suggest to some
extent general results.

2.1 Basic Definitions

Our objective is to compare significance indices defined under different paradigms. Let us denote byΘ, the parameter
space,B the sigma-algebra of subsets ofΘ andπ the prior probability measure. The prior probability model, which
exists in the mind of the investigator, is the triple(Θ,B, π). There is an observable random variableX with sample
spaceX and an associated sigma-algebraA. The distribution ofX is supposed to belong to the family{Pθ : θ ∈ Θ}.
These elements form the statistical model(X ,A, {Pθ : θ ∈ Θ}).

Let Π be the product measure for the joint random objectω = (θ, X), Ω = Θ × X , andF = B × A. That is,
(Ω,F) = (Θ × X ,B × A) is a measurable product space with a probability model(Ω,F , Π). There is an important
restriction in building such a complete model:Pθ must be a measurable function onB for everyx on X . Hidden
behind the wings of this global probability model(Ω,F , Π) are the following four operational models:

1. the prior model(Θ,B, π)

2. the statistical model(X ,A, {Pθ : θ ∈ Θ}), a set of probability spaces

3. the posterior model(Θ,B, {πx : x ∈ X})
4. the predictive model(X ,A,P), whereP is the marginal or predictive distribution ofx

If the probability spaces are absolutely continuous, then we have
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1. the likelihood functionsDx = {f(x|θ) = L(θ|x); θ ∈ Θ}
2. the posterior density functionsPx = {π(θ|x); θ ∈ Θ}
The likelihood ratio was chosen to order the sample space. An order that regards both the null and alternative

hypotheses. This subject is discussed by [16] and [17]. The asymptotic distribution of the likelihood ratio statistics
under the null hypothesis is given by [18]. On the other hand, by definition,e-values always take into account both
hypotheses.

Definition 1.
A sharp null hypothesisH is the statementθ ∈ ΘH for ΘH ⊂ Θ in which the dimensionh of ΘH is smaller than the
dimensionm of Θ. The global alternative hypothesisA is the statementθ ∈ Θ−ΘH .

As can be seen in the sequel, the computation ofe-values is based onPx while p-values are based onDx.

2.2 Likelihood Ratio p-Value

The likelihood ratio statistic for an observationx of X is defined as follows:

λ(x) =
supθ∈ΘH

L(θ|x)
supθ∈ΘL(θ|x)

.

Definition 2.
Thep-value atx is the probability, underH, of the eventSx = {y ∈ X : λ(y) ≤ λ(x)}.

For large samples and under well-behaved models−2 ln λ(x) is asymptotically distributed asχ2 with m − h
degrees of freedom (see [19]).

2.3 Evidence Index: e-Values

Definition 3.
Let π(θ|x) the posterior density ofθ given the observed sample andT (x) = {θ ∈ Θ : π(θ|x) ≥ supΘH

π(θ|x)}. The
measure of evidence favoring the hypothesisθ ∈ ΘH is defined asEv(ΘH , x) = 1− P (θ ∈ T (x)|x).

The evidence value considers, favoring a sharp hypothesis, all points of the parameter space whose posterior
density values are, at most, as large as its supremum overΘH . Therefore, a large value ofEv(ΘH , x) means that the
subsetΘH lies in high (posterior) probability ofΘ and this shows that the data strongly support the hypothesis. On the
other hand, whenEv(ΘH , x) is small this shows thatΘH is in a low-probability region ofΘ and the data would make
us discreditH. An advantage of this procedure is that it overcomes the difficulty of dealing with sharp hypotheses
because there is no need to introduce a prior probability for the null hypothesis, as in the usual Bayesian test, which
uses Bayes factors. The Bayesian procedure that uses the evidence value to test sharp hypotheses is also known as the
full Bayesian significance test (FBST) (see [7]).

2.4 Illustration

In this section, we consider the standard example of comparing two proportionsθ1 andθ2, parameters of two inde-
pendent binomial samples,x andy. Consider that the sample sizes arem = 20 andn = 30 and the observed data
x = 14 andy = 12. The objective is to testH:θ1 = θ2, againstA:θ1 6= θ2.

The likelihood ratio test statistic in this case is 4.42, and thep-value is the tail of aχ2 density with one degree of
freedom,p = 0.0355. To compute thee-value, first we obtain the tangential set (T ) described in Fig. 3 and obtain the
posterior probability of this set,P (θ ∈ T (x)|x). Taking its complement, we obtain thee-value.

Let us consider independent uniform priors for the parametersθ1 andθ2. The two independent posteriors in this
situation areπ(θ1|x = 14; m = 20) ∼ Beta(15;7) andπ(θ2|y = 12; n = 30) ∼ Beta(13;19). The pointθ∗ = 26/50
is the parameter point that maximizes the posterior underΘH and defines the tangential set.
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FIG. 3: Parameter space,ΘH and tangent set (T ) for two Binomial counts.

Thee-value obtained with these posteriors is 0.0971. Taking the tail of aχ2 density with 2 degrees of freedom,
tail starting at 4.42, the value of the likelihood ratio statistic at the observation, we obtain the value 0.1097, which is
close to oure-value.

3. RELATING THE TWO INDICES

The duality betweenp ande-values presented in Section 1 suggests that there might exist a functional relation between
them. In principle, such a relation would operationally equate the significance indices turning unimportant the choice
among them. There is, however, an important advantage ofe-values overp-values: the use of the former never violates
the paramount Likelihood principle, [20], while significance tests based onp-values may violate the principle for
small samples. Furthermore, and indeed, the tentative functional relations would not be invariant to noninformative
sampling stopping rules, even ife-values, by adhering to the Likelihood Principle, do not depend on the stopping rule.
The relation betweeneandp would therefore depend on the entertained statistical model.

To not compromise the comparison, we designed it withp-values the order of which on the sample space takes into
account both hypotheses, null and alternative: The Likelihood ratio test statistic orders the sample space regarding both
hypotheses. Moreover, the use ofp-values based on the Likelihood ratio test do not violate the Likelihood principle
for large samples. The logical necessity of regarding both hypotheses is extensively discussed by [16] and amounts, at
the end of the day, to the use of Neyman-Pearson Lemma in lieu of “null-only” significance tests (see also [15] on this
matter). On the other hand,e-values, by their very definition, intrinsically regard bothH andA. To explicitly enunciate
the formal relation between the indices we present the next result. By recalling that dim(Θ) = m, dim(ΘH) = h,

a∼
is for asymptotical distribution andFk being the distribution function of aχ2

k, we have the following:

Theorem 1. Assuming that the countour restrictions for asymptotic normality described by [21] are satisfied,
−2 ln λ(x) a∼ χ2

m−h, Ev(ΘH , x) ≈ 1− Fm[F−1
m−h(1− p)].

Proof: Assume that all contour properties listed in [21] page 436, are satisfied. Relative to convergence of large
samples, the normalized likelihood and the posterior density are indistinguishable.

LettingL, M , andm be, respectively, the normalized likelihood, the posterior mode, and the maximum restricted
to ΘH . Therefore,L(m|x) = supθ∈ΘH

L(θ|x), L(M |x) = supθ∈Θ L(θ|x) and the tangential set isT = {θ ∈ Θ :
L(m|x) ≤ L(θ|x)}. Because of the the good behavior ofL, one may use the normal approximation in order to evaluate
the posterior probability of any subset of interest, likeT . Hence, using the standard norm notation‖(θ − M)‖, for
vector(θ−M), we have
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‖(θ−M)‖2 = (θ−M)′Σ−1(θ−M)

whereΣ−1 is the (generalized) inverse of the posterior covariance matrix ofθ. We can write the tangential set as

T = {θ ∈ Θ : ‖m−M‖2 ≥ ‖θ−M‖2}. (1)

If dim(Θ) = m (> 1) and using the normal approximation, then‖θ −M‖ is asymptotically distributed as aχ2

distribution withm degrees of freedom. Consequently, the evidence value is evaluated as

Ev(ΘH , x) = 1− P (T ∈ Θ|x) ≈ 1− Fm(‖m−M‖2). (2)

Let the relative likelihood be denoted byλ(θ) = L(θ|x)/L(M |x). The tangential set has also the following
representation:

T = {θ ∈ Θ : ln λ(m) ≤ ln λ(θ)} = {θ ∈ Θ : −2 ln λ(m) ≥ −2 ln λ(θ)}. (3)

From (1) and (3), we have that‖m−M‖2 ≈ −2 ln λ(m) = cm, and the asymptoticp-value is

p = 1− Fm−h(cm).

Writing cm = F−1
m−h(1− p) and substituting in (2), we obtainEv(ΘH , x) ≈ 1− Fm[F−1

m−h(1− p)]. ¥
Consequently, asymptotically the relation between the indices is simply a relation between two survival functions

of χ2 with different degrees of freedom [i.e.Fm−h(s) = 1−Fm−h(s) = p-value andFm(s) = 1−Fm(s) = e-value,
wheres is the actual observation ofS, the test statistic]. We did note by experience that there is a beta distribution func-
tion relating twoχ2 survival functions evaluated at the same point. The webpage www.ufscar.br/∼polpo/papers/indices
presents 900 graphics illustrating the fitting quality of the beta distribution functions relating twoχ2 survival func-
tions with degrees of freedom varying from 1 to 30. This fact favors the use of these beta functions to the detriment
of the inverse of theχ2 distribution function that does not have closed form. One can also observe that, in most of our
standard examples, this kind of beta fitting works well even for small samples, using indices calculated exactly.

Whenever the sharp hypothesis is a single point, the null hypothesis space has nil dimension and thep- ande-
values are asymptotically equal. The two indices can be exactly evaluated under various Gaussian statistical models.
An exception is the Behrens-Fisher problem, discussed in Section 5.2, for which exactp-values are not available.

The examples discussed in the sequel illustrate the functional relation under several statistical models.

4. SIMPLE ILLUSTRATIVE EXAMPLES

This section illustrates situations with continuous random variables for which we know the likelihood ratio distribu-
tions or some transformations of them. In such cases, one can find thep-values without theχ2 approximation that are
used for large samples.

4.1 Mean Test for Normal Random Samples

We simulated 1000 normal random samples with nine observations each, zero mean, and variance 2. Considering the
variance unknown, the LR is equivalent to the Student’st procedure forH0 : µ = 0. For the FBST, we assume a
noninformative prior,π(µ, σ) ∝ 1/σ. Figure 4 plots thep-values in the horizontal axis ande-values in the vertical
axis.

The fitted line was obtained by finding the beta parameters, which minimized the sum of squared differences
between the data and the beta1 cdf. The estimated values for the beta parameters werea = 1.1004 andb = 2.0884.

1We are considering the following expression for the beta density of a random variablex: f(x|a, b) = [1/B(a, b)]xa−1(1−x)b−1

for x ∈ [0, 1], a andb positive real parameters.
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FIG. 4: Mean test with normal random samples.

4.2 Exponential Random Samples

Consider the case of two samples of independent and identically exponential distributions with parametersδ1 andδ2.
Our interest is to testH:δ1 = δ2.

For this exercise, we simulated 1000 samples of sizen = 20 and 1000 of sizek = 25 of an exponential distribution
with the parameter equal to 2. Taking these two groups of samples, we consider the first as random samples ofX
and the remaining as random samples ofY : X andY representing random variables. UnderH, the statisticT =∑n

i=1 xi/(
∑n

i=1 xi +
∑k

i=1 yi) follows a beta distribution with parametersn = 20 andk = 25. Therefore, we can
find the distribution of some function of the likelihood ratio statistic,λ(X, Y ), because this statistic is a function ofT .

For the FBST we adopted noninformative priors forδi, π(δi) ∝ 1/δi, wherei = 1, 2. The fitted line in Fig. 5 is
the accumulated beta distribution function with estimated parametersa = 0.79378 andb = 1.9943.

FIG. 5: Exponential random samples test.
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4.3 Shape Parameter for Pareto Random Samples

Considering a random sample from a Pareto distribution with shape parameterγ and scale parameterν, we focus on
H0 : γ = 1, ν being unknown. In order to calculate the LR exactp-value, we use the fact that2T ∼ χ2

2(n−1), where

n is the sample size andT = log
[∏n

i=1 xi/(x(1))n
]
, wherex(1) is the sample minimum. For the FBST, we again

propose the noninformative priorsπ(γ) ∝ 1/γ andπ(ν) ∝ 1/ν.
We found thep- ande-values for 1000 simulated random samples with 20 observations each,γ = 1 andν = 2.

Figure 6 shows the results with the beta parameters estimated ata = 1.4712 andb = 2.428.

5. INTRIGUING CASES

By performing simulations for another test whosep-values can be calculated exactly, we found a situation where the
proposed relationship fails to happen, at least for small samples. This led our thoughts to another question: what is
the necessary number of observations for the relationship to be valid? For the above-proposed tests, and the tests to
follow, we reached the answer by simply following practical considerations and observing the simulation results. As
a final example we consider the Behrens-Fisher problem to illustrate the use of asymptoticalp-values.

5.1 Variance Test for Normal Random Samples

We simulated 1000 normal random samples with 20 observations each, zero mean and variance two. The LR gives us
theF test forH0 : σ2 = 2. For the FBST, we use the priorπ(µ, σ) ∝ 1/σ.

Figure 7 below shows the plot ofp- and e-values. Faced with this umbrella graph, we increased the sample
size hoping to get the beta relation as above. Therefore, we performed the same exercise with samples with 100,
500, and 1000 observations each and eventually arrived at the beta relationship. Figure 8 shows the results of the
accumulated beta distribution with estimated parametersa = 0.84161 andb = 2.0182 for samples with 1000 ob-
servations. Evaluating thee-values through the relation given by Theorem 1, and drawing the line in Fig. 8, it is
not possible distinguish between the asymptotic and empirical relation estimated by the beta distribution. To show
how close these two lines are, we evaluated the maximum pointwise absolute distance between the two lines and
obtained the value of 0.005403. The graphs for samples with 100 and 500 observations are available at the website
www.ufscar.br/∼polpo/papers/indices.

FIG. 6: Shape parameter test for Pareto random samples.
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FIG. 7: Variance test for normal random samples with 20 observations.

FIG. 8: Variance test for normal random samples with 1000 observations.

We can see in Fig. 9 why the relation is not obeyed for small samples when we plot the sample variance against the
respectivep- ande-values. The horizontal axis presents the sample variance, and the vertical axis the correspondent
p- ande-values both evaluated for the 20 observations samples. The left legs of both curves display the samples that
are on the straight line in Fig. 7, and the right legs display the samples that form the umbrella shape.

5.2 Behrens-Fisher Problem

For the Behrens-Fisher problem we simulated 1000 samples of a normal random variableX with 9 observations each,
meanµ and varianceσ2

x. At the same time, we generated 1000 samples of a normal random variableY with 20
observations each, meanµ and varianceσ2

y. For each sample, the value ofµ was generated from a normal distribution
with zero mean and variance 100. The standard deviations were obtained fromγ distributions with expected values of
7 and 20 forσx andσy, respectively.
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FIG. 9: Sample variance againstp- ande-values for normal samples with 20 observations.

In this case the LR does not provide an exactp-value. Therefore, we present the asymptoticp-value calculated
with theχ2 approximation. Figure 10 shows the results of the accumulated beta adjusted with estimated parameters
a = 0.9121 andb = 1.2843.

We also used the relationship described in Section 3 to estimatep- from e-values. To find it, we computed the
inverse cdf of aχ2 distribution with four degrees of freedom, which is dim(Θ) in this case, for thee-value obtained.
Then, we evaluated this result with aχ2 cdf with three degrees of freedom, dim(Θ) − dim(ΘH). This would be
our approximation for thep-value. Figure 11 shows the results with the accumulated beta adjusted with estimated
parametersa = 0.8535 andb = 1.3868.

6. CONCLUDING REMARKS

p- ande- values handle the same problems in a very similar way: (i) thep-value is a tail fromx, the observation,
givenH, the null hypothesis; and (ii) thee-value is a tail fromH givenx. This introduces a duality between them. The
following questions can be naturally asked:

FIG. 10: Behrens-Fisher problem with asymptoticp-values.
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FIG. 11: Behrens-Fisher problem withp-values obtained from the relationship reported in section 3.

1. Is there any deterministic function relating the two indices?

2. What kind of difficulties arise for the case of discrete sample spaces?

3. What are the advantages to favor one index in detriment of the other?

These questions encouraged the authors to write this paper and tentative answers are presented below. Answering the
two first questions, one should be able to respond the last one appropriately.

Answer to question 1. Theorem 1 shows that there exists a relationship that is valid asymptotically. We cannot write
it explicitly because theχ2 distribution function, and its inverse, does not have a closed form. Simulation exercises
indicates that the relation betweenp ande is well approximated by the accumulated beta distribution function. The
beta fitting does not describe the relation between the indices for the variance test when the sample size is small.

Answer to question 2. Recall, from Section 2, that we are restricted to the cases where all posterior probability
spaces are absolutely continuous; hence, there are densities. Whenever we must work with discrete sample space,
problems arise in thep-value computation: some include the observed value in the tail and some exclude it; see the
binomial example in Section 2.

Answer to question 3. The two indices are very similar, but the computation of exactp-values usually depend on
the whole sample space: it may, in contrast to thee-value, violate the Likelihood principle. Considering these answers
and the results shown in this paper, we recommend that one may comfortably always use thee-value.

The e-value has other desirable properties for a Bayesian significance test, namely: it is a probability value de-
rived from the posterior distribution on the full parameter space; an invariant for alternative parametrizations; neither
requires nuisance parameters elimination nor the assignment of positive prior probabilities to sets of zero Lebesgue
measure, contrary to tests based on Bayes factors; and is a formal Bayesian test and, as such, its critical values can be
obtained from considered loss functions.
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