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The goal of this paper is to illustrate how two significance indices—the frequentist p-value and Bayesian e-value—
have a straight mathematical relationship. We calculate these indices for standard statistical situations in which sharp
null hypotheses are being tested. The p-value considered here is based on the likelihood ratio statistic. The existence of
a functional relationship between these indices could surprise readers because they are computed in different spaces:
p-values in the sample space and e-values in the parameter space.
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1. INTRODUCTION

This paper relates two significance indices: phealue ande-value,p for probability ande for evidence. The main
objective of these indices is to measure the consistency of data with a sharp null hypdtliasiepresenting the
alternative). As heuristic definitions of the indices, we could say the followingytedue is the probability of the set

of points of the sample space that has densities smaller than the actual sample computet thederalue is the
posterior probability of the set of points of the parameter space that has posterior densities smaller than the maximal
density withinH.

The frequentisp-value has a long history because it appeared in the statistical literature. [1-3] seem to be the first
to use the concepts of “tail” and “more extreme” sample points—now included in almost every statistics textbook.
Their definition ofp-value is the probability, under the null hypothesis, that the test statistic would take a value at least
as extreme as the one in fact observed. More recently, [4, 5] strongly advocated thg@usduEs as proper indices
to evaluate significanc@-values have been by far the most used statistical tool in all fields of science.

The history of the Bayesiagvalue is recent, being introduced by [6] and reviewed extensively by [7]. It has been
applied in different fields, [8—10].

The comparison of frequentist to Bayesian tests is made by [11-13]. In these wasdisies are compared to
Bayes factors. Usually, papers comparing Bayesian and classical tests reach the conclusion for accept/reject rules
(see, for instance, [14]). A decision-theoretical approach to significance testing is developed by [15]. Here we are
looking exclusively for the values of the significance indigesande-values.

There is a clear duality betwegn ande-values: while the former is a tail evaluation of the sampling distribution
under the null hypothesis, the latter is a tail evaluation of the posterior distribution conditional on the actual sample
observation. Furthermore, while the tail fmvalue evaluation starts at the observed statistic value, the taifalue
starts at the sharp null hypothesis. In other wordsptlalue is the tail fromx givenH volume, while thes-value is
the tail fromH givenx volume. More detailed definitions of both indices and examples are provided in the sequel.
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We call the reader’s attention to the way a tail should be defined. To have a meaningful concept of more extreme
sample (parameter) points, an order must be defined in the sampling (parameter) space. We consider the order based
on the likelihood ratio\ [posterior densityr(6)]: a sample poiny is more extreme tharif A(y) < A(x) [parameter
0, is more extreme thaéy if 7(05) < 7(0;)]. As seen in [16] and [17], the likelihood ratio functidnthe posterior
densityr), defines a natural order on the sample (parameter) space, regardless of the dimension of the space. One
should note that these orders do take into account the alternative hypadthestse null hypothesisl. Figures 1 and
2 illustrate this discussion displaying the two tails for the binomial with samplersizel 0, observatiorx = 3, and
null hypothesidH : 6 = 1/2.

The above considerations suggest that there is a strong connection bptaregs Such a relation would depend
on the chosen prior and on the dimension of the two spaces considered, sampling and parameter spaces. To fairly
compare the indices, we use noninformative priorssfgalues and the likelihood ratio statistic fprvalues.

While searching for an analytical relation between the indices, we realized that a possible function would be model
dependent, as the examples presented confirm. Some surprising results are shown, particularly for multiparameter
cases.

Section 2 presents the background, notation, and definitions. Also, some illustrative examples are provided. Sec-
tion 3 presents our conjectures about promising relations betpreamd e-values. More examples are given in Sec-
tions 4 and 5, where intriguing problems are discussed. Finally, Section 6 provides additional comments and discus-
sion.

2. MOTIVATION AND DEFINITIONS

For motivation, we consider a standard illustration: the normal mean test with variance equal ta % 139 be
the observed value of the minimal sufficient statistic: the sample mean£oB observations. Suppose that the null
hypothesis to be testedlis: 1 = 5. Regard the normalized likelihood function as a normal density with mean equal
to 3.9 and variance equal 19/3. Recall that the sampling density und¢iis a normal distribution with mean 5 and
variancel /3. Thep-value is 0.0567, twice the area of the tail starting at 3.9. Surprisingly, twice the area of the
tail that starts aft = 5, in the posterior distribution, also equals 0.056% e. This result is a consequence of the fact
that the normal density depends#andy only on (¢t — w)2.

Consider now a binomial sampling distribution with = 10 and observatiorx = 3. The interest is to test
H:0=1/2vs.A:0 # 1/2. Figures 1 and 2 illustrate the two kinds of tails discussed. Recall that in this case
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FIG. 1: Binomial sampling: posterior density under= 10 andx = 3.
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FIG. 2: Binomial sampling: posterior density under= 10 andx = 3.

the normalized likelihood is a beta density with paraméteg). Thep-value is 0.109375 or 0.343750, depending on
the observatiox = 3 being or not deemed to be extreme. On the other hand-tladue is the sum of the right and
left areas,P[0 > 0.5|x = 3] + P[0 < 0.14172|x = 3] = 0.11328 +0.0582 = 0.17148. A curious fact is that twice
this 0.11328 right tail area equals exactly the average of theptwalues: the one that includes= 3 and the other
excluding it.

The two examples above illustrate thpande may be, to some extent, functionally related even when they have
different values. The aim of this paper is to investigate their relation in several particular cases and to suggest to some
extent general results.

2.1 Basic Definitions

Our objective is to compare significance indices defined under different paradigms. Let us defptedparameter
space /5 the sigma-algebra of subsets@®fandr the prior probability measure. The prior probability model, which
exists in the mind of the investigator, is the trigl®, B, 7). There is an observable random variallevith sample
spaceX and an associated sigma-algelaThe distribution ofX is supposed to belong to the fam{ly, : 6 € ©}.
These elements form the statistical mog¥l A, {Pp : 6 € ©}).

Let IT be the product measure for the joint random object (6, X), 2 = © x X, andF = B x A. That is,
(Q,F)=(©x X,B x A) is a measurable product space with a probability m¢@elF, IT). There is an important
restriction in building such a complete modél must be a measurable function #hfor everyx on X'. Hidden
behind the wings of this global probability modé}, 7, II) are the following four operational models:

1. the prior mode(©, 5, )

2. the statistical mod€lX’, A, { Py : © € ©}), a set of probability spaces

3. the posterior mod€l®, B, {my : X € X'})

4. the predictive model X', A, P), whereP is the marginal or predictive distribution gf

If the probability spaces are absolutely continuous, then we have
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1. the likelihood function®,, = {f(x|0) = L(8|x); 6 € 6}
2. the posterior density functiord, = {w(0|x); 6 € 0}

The likelihood ratio was chosen to order the sample space. An order that regards both the null and alternative
hypotheses. This subject is discussed by [16] and [17]. The asymptotic distribution of the likelihood ratio statistics
under the null hypothesis is given by [18]. On the other hand, by definiéeajues always take into account both
hypotheses.

Definition 1.
A sharp null hypothesibl is the statemeri € © for © 5 C O in which the dimensiok of © 5 is smaller than the
dimensionm of ©. The global alternative hypothedisis the statemeri € © — O .

As can be seen in the sequel, the computatiosvlues is based oRy while p-values are based dn,,.

2.2 Likelihood Ratio p-Value
The likelihood ratio statistic for an observatimmof X is defined as follows:

 SURyeo, L(0[X)
M = SiRco LOR)

Definition 2.
Thep-value atx is the probability, undei, of the eventS, = {y € X : A(y) < A(X)}.

For large samples and under well-behaved mode$n A(x) is asymptotically distributed ag® with m — h
degrees of freedom (see [19]).

2.3 Evidence Index: e-Values

Definition 3.
Let 7(0]x) the posterior density df given the observed sample aiix) = {6 € © : 7(6|x) > supg,, 7(0[X)}. The
measure of evidence favoring the hypotheésis O ; is defined afv(© g, x) =1 — P(6 € T(X)|X).

The evidence value considers, favoring a sharp hypothesis, all points of the parameter space whose posterior
density values are, at most, as large as its supremumoyeil herefore, a large value d&v(O y, x) means that the
subset y lies in high (posterior) probability ab and this shows that the data strongly support the hypothesis. On the
other hand, whewv(© g, X) is small this shows th&b  is in a low-probability region 0B and the data would make
us discreditH. An advantage of this procedure is that it overcomes the difficulty of dealing with sharp hypotheses
because there is no need to introduce a prior probability for the null hypothesis, as in the usual Bayesian test, which
uses Bayes factors. The Bayesian procedure that uses the evidence value to test sharp hypotheses is also known as the
full Bayesian significance test (FBST) (see [7]).

2.4 lllustration

In this section, we consider the standard example of comparing two propoticarsd 05, parameters of two inde-
pendent binomial samples,andy. Consider that the sample sizes ate= 20 andn = 30 and the observed data
x = 14 andy = 12. The objective is to testi:0,; = 05, againstA:0; # 0.

The likelihood ratio test statistic in this case is 4.42, andsvalue is the tail of a¢? density with one degree of
freedomp = 0.0355. To compute the-value, first we obtain the tangential s&)(described in Fig. 3 and obtain the
posterior probability of this sef?(6 € T'(x)|x). Taking its complement, we obtain teevalue.

Let us consider independent uniform priors for the paraméteend6,. The two independent posteriors in this
situation arer(0,|z = 14; m = 20) ~ Beta(15;7) andr(82]y = 12;n = 30) ~ Beta(13;19). The poir@* = 26/50
is the parameter point that maximizes the posterior utderand defines the tangential set.
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FIG. 3: Parameter spac®,y and tangent sefl() for two Binomial counts.

The e-value obtained with these posteriors is 0.0971. Taking the tailgf density with 2 degrees of freedom,
tail starting at 4.42, the value of the likelihood ratio statistic at the observation, we obtain the value 0.1097, which is
close to oure-value.

3. RELATING THE TWO INDICES

The duality betweep ande-values presented in Section 1 suggests that there might exist a functional relation between
them. In principle, such a relation would operationally equate the significance indices turning unimportant the choice
among them. There is, however, an important advantage/alues ovep-values: the use of the former never violates

the paramount Likelihood principle, [20], while significance tests basep-emlues may violate the principle for

small samples. Furthermore, and indeed, the tentative functional relations would not be invariant to noninformative
sampling stopping rules, evenefvalues, by adhering to the Likelihood Principle, do not depend on the stopping rule.
The relation betweeaandp would therefore depend on the entertained statistical model.

To not compromise the comparison, we designed it wittalues the order of which on the sample space takes into
account both hypotheses, null and alternative: The Likelihood ratio test statistic orders the sample space regarding both
hypotheses. Moreover, the usepfalues based on the Likelihood ratio test do not violate the Likelihood principle
for large samples. The logical necessity of regarding both hypotheses is extensively discussed by [16] and amounts, at
the end of the day, to the use of Neyman-Pearson Lemma in lieu of “null-only” significance tests (see also [15] on this
matter). On the other hanehvalues, by their very definition, intrinsically regard bétrandA. To explicitly enunciate
the formal relation between the indices we present the next result. By recalling th@)dimm, dm(©y) = h, ~
is for asymptotical distribution an#j, being the distribution function of g7, we have the following:

Theorem 1. Assuming that the countour restrictions for asymptotic normality described by [21] are satisfied,
—2InA(X) & x2,_ ., Bo(Om,x) ~ 1 — F,[FL, (1 - p)l.

m—h

Proof: Assume that all contour properties listed in [21] page 436, are satisfied. Relative to convergence of large
samples, the normalized likelihood and the posterior density are indistinguishable.

Letting L, M, andm be, respectively, the normalized likelihood, the posterior mode, and the maximum restricted
to © . Therefore,L(m|x) = supgcg,, L(0|X), L(M|X) = supgce L(8|x) and the tangential set i = {6 € O :
L(m|x) < L(8]x)}. Because of the the good behaviotgfone may use the normal approximation in order to evaluate
the posterior probability of any subset of interest, likReHence, using the standard norm notatjga — M)||, for
vector(6 — M), we have
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I(6 = M)|* = (6 — M)'T™H(6 — M)
whereX ! is the (generalized) inverse of the posterior covariance mati@x dfe can write the tangential set as
T={0€0:|m-M|*=|6- M|} @)

If dim(©) = m (> 1) and using the normal approximation, thigh— M/ || is asymptotically distributed as &
distribution withm degrees of freedom. Consequently, the evidence value is evaluated as

Ev(®py,x) =1 - P(T € Ox) ~ 1 — Fp(|Jm — M|]?). @)

Let the relative likelihood be denoted By0) = L(0|x)/L(M|x). The tangential set has also the following
representation:

T={0€O:InA(m) <InA(0)} ={6 € O: —2InA(m) > —2InA(0)}. (3)

From (1) and (3), we have thiin — M||? ~ —21In A(m) = ¢, and the asymptotip-value is
p= 1- meh(cm)-

Writing ¢, = F,.', (1 — p) and substituting in (2), we obtaiiv(Q,x) ~ 1 — F,[F*, (1 —p)]. B

Consequently, asymptotically the relation between the indices is simply a relation between two survival functions
of x? with different degrees of freedom [i.€,,,,_(s) = 1 —F,,_,(s) = p-value andF’,,, (s) = 1— F},(s) = e-value,
wheres is the actual observation 6f, the test statistic]. We did note by experience that there is a beta distribution func-
tion relating twoy? survival functions evaluated at the same point. The webpage www.ufssardipb/papers/indices
presents 900 graphics illustrating the fitting quality of the beta distribution functions relating®worvival func-
tions with degrees of freedom varying from 1 to 30. This fact favors the use of these beta functions to the detriment
of the inverse of the? distribution function that does not have closed form. One can also observe that, in most of our
standard examples, this kind of beta fitting works well even for small samples, using indices calculated exactly.

Whenever the sharp hypothesis is a single point, the null hypothesis space has nil dimensionparahtre
values are asymptotically equal. The two indices can be exactly evaluated under various Gaussian statistical models.
An exception is the Behrens-Fisher problem, discussed in Section 5.2, for whiclpexalaes are not available.

The examples discussed in the sequel illustrate the functional relation under several statistical models.

4. SIMPLE ILLUSTRATIVE EXAMPLES

This section illustrates situations with continuous random variables for which we know the likelihood ratio distribu-
tions or some transformations of them. In such cases, one can fipeMilaes without the? approximation that are
used for large samples.

4.1 Mean Test for Normal Random Samples

We simulated 1000 normal random samples with nine observations each, zero mean, and variance 2. Considering the
variance unknown, the LR is equivalent to the Studenhfisocedure forH, : © = 0. For the FBST, we assume a
noninformative prior;r(p, o) o< 1/0. Figure 4 plots the-values in the horizontal axis arevalues in the vertical
axis.

The fitted line was obtained by finding the beta parameters, which minimized the sum of squared differences
between the data and the betalf. The estimated values for the beta parameters werd .1004 andb = 2.0884.

!We are considering the following expression for the beta density of a random varigt{e|a, b) = [1/B(a, b)]z*~*(1—z)*!
for z € [0, 1], a andb positive real parameters.
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FIG. 4: Mean test with normal random samples.

4.2 Exponential Random Samples

Consider the case of two samples of independent and identically exponential distributions with par&yaetdts.
Our interest is to tedtl:6; = ds.
For this exercise, we simulated 1000 samples ofsize20 and 1000 of sizé = 25 of an exponential distribution
with the parameter equal to 2. Taking these two groups of samples, we consider the first as random sakhples of
and the remaining as random samples’ofX andY representing random variables. Undir the statisticl’ =
S x> i+ Zle y;) follows a beta distribution with parametets= 20 andk = 25. Therefore, we can
find the distribution of some function of the likelihood ratio statiskicX, Y'), because this statistic is a functionof
For the FBST we adopted noninformative priors §rm(5;) « 1/6;, wherei = 1,2. The fitted line in Fig. 5 is
the accumulated beta distribution function with estimated parameter8.79378 andb = 1.9943.
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FIG. 5: Exponential random samples test.

Volume 2, Number 2, 2012



168 Diniz et al.

4.3 Shape Parameter for Pareto Random Samples

Considering a random sample from a Pareto distribution with shape parayreaterscale parameter, we focus on
Hy : v = 1,v being unknown. In order to calculate the LR expstalue, we use the fact thaf" ~ X%(nq)' where
n is the sample size arifl = log [[];", zi/(z(1))"], Wherez(y) is the sample minimum. For the FBST, we again
propose the noninformative priorgy) o« 1/y andn(v) o« 1/v.

We found thep- ande-values for 1000 simulated random samples with 20 observationsaeh, andv = 2.
Figure 6 shows the results with the beta parameters estimated at4712 andb = 2.428.

5. INTRIGUING CASES

By performing simulations for another test whgs®alues can be calculated exactly, we found a situation where the
proposed relationship fails to happen, at least for small samples. This led our thoughts to another question: what is
the necessary number of observations for the relationship to be valid? For the above-proposed tests, and the tests to
follow, we reached the answer by simply following practical considerations and observing the simulation results. As

a final example we consider the Behrens-Fisher problem to illustrate the use of asymptutitas.

5.1 Variance Test for Normal Random Samples

We simulated 1000 normal random samples with 20 observations each, zero mean and variance two. The LR gives us
the F test forHy : 02 = 2. For the FBST, we use the priafu, o) o< 1/0.

Figure 7 below shows the plot gf- and e-values. Faced with this umbrella graph, we increased the sample
size hoping to get the beta relation as above. Therefore, we performed the same exercise with samples with 100,
500, and 1000 observations each and eventually arrived at the beta relationship. Figure 8 shows the results of the
accumulated beta distribution with estimated parametets 0.84161 andb = 2.0182 for samples with 1000 ob-
servations. Evaluating the-values through the relation given by Theorem 1, and drawing the line in Fig. 8, it is
not possible distinguish between the asymptotic and empirical relation estimated by the beta distribution. To show
how close these two lines are, we evaluated the maximum pointwise absolute distance between the two lines and
obtained the value of 0.005403. The graphs for samples with 100 and 500 observations are available at the website
www.ufscar.bri&-polpo/papers/indices.
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FIG. 6: Shape parameter test for Pareto random samples.
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FIG. 7: Variance test for normal random samples with 20 observations.
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FIG. 8: Variance test for normal random samples with 1000 observations.

We can see in Fig. 9 why the relation is not obeyed for small samples when we plot the sample variance against the
respectivgp- ande-values. The horizontal axis presents the sample variance, and the vertical axis the correspondent
p- ande-values both evaluated for the 20 observations samples. The left legs of both curves display the samples that
are on the straight line in Fig. 7, and the right legs display the samples that form the umbrella shape.

5.2 Behrens-Fisher Problem

For the Behrens-Fisher problem we simulated 1000 samples of a normal random \&risibhed observations each,
meanp and varianceo2. At the same time, we generated 1000 samples of a normal random varialith 20
observations each, mearand varianceyf,. For each sample, the valueofvas generated from a normal distribution
with zero mean and variance 100. The standard deviations were obtained éfistnibutions with expected values of
7 and 20 foro,, ando,, respectively.
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FIG. 9: Sample variance against ande-values for normal samples with 20 observations.

In this case the LR does not provide an exaatalue. Therefore, we present the asymptptealue calculated
with the x2 approximation. Figure 10 shows the results of the accumulated beta adjusted with estimated parameters
a = 0.9121 andb = 1.2843.

We also used the relationship described in Section 3 to estipadtem e-values. To find it, we computed the
inverse cdf of a2 distribution with four degrees of freedom, which is di#) in this case, for the-value obtained.
Then, we evaluated this result withy@ cdf with three degrees of freedom, di@) — dim(©). This would be
our approximation for the-value. Figure 11 shows the results with the accumulated beta adjusted with estimated
parameterg = 0.8535 andb = 1.3868.

6. CONCLUDING REMARKS

p- ande- values handle the same problems in a very similar way: (i)ptvelue is a tail fromx, the observation,
givenH, the null hypothesis; and (ii) thevalue is a tail fromH givenx. This introduces a duality between them. The
following questions can be naturally asked:

1 1 1 1 1 |
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FIG. 10: Behrens-Fisher problem with asymptagpievalues.
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FIG. 11: Behrens-Fisher problem witrvalues obtained from the relationship reported in section 3.

1. Is there any deterministic function relating the two indices?
2. What kind of difficulties arise for the case of discrete sample spaces?
3. What are the advantages to favor one index in detriment of the other?

These questions encouraged the authors to write this paper and tentative answers are presented below. Answering the
two first questions, one should be able to respond the last one appropriately.

Answer to question 1. Theorem 1 shows that there exists a relationship that is valid asymptotically. We cannot write
it explicitly because the? distribution function, and its inverse, does not have a closed form. Simulation exercises
indicates that the relation betweprande is well approximated by the accumulated beta distribution function. The
beta fitting does not describe the relation between the indices for the variance test when the sample size is small.

Answer to question 2. Recall, from Section 2, that we are restricted to the cases where all posterior probability
spaces are absolutely continuous; hence, there are densities. Whenever we must work with discrete sample space,
problems arise in thp-value computation: some include the observed value in the tail and some exclude it; see the
binomial example in Section 2.

Answer to question 3. The two indices are very similar, but the computation of pxadties usually depend on
the whole sample space: it may, in contrast toeivalue, violate the Likelihood principle. Considering these answers
and the results shown in this paper, we recommend that one may comfortably alwaysessaltiee

The e-value has other desirable properties for a Bayesian significance test, namely: it is a probability value de-
rived from the posterior distribution on the full parameter space; an invariant for alternative parametrizations; neither
requires nuisance parameters elimination nor the assignment of positive prior probabilities to sets of zero Lebesgue
measure, contrary to tests based on Bayes factors; and is a formal Bayesian test and, as such, its critical values can be
obtained from considered loss functions.
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