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A multiscale beam element for the analysis of prestressed concrete that accounts for the initial effects of prestressing,

creep, shrinkage, and temperature was developed within the framework of the reduced order computational continua

(RC2), which accounts for representative volume elements (RVEs) of finite size. A constitutive law rescaling approach

for the multiscale beams that renders the formulation nearly invariant to the beam element length was developed. The

proposed rescaling approach differs from the classical rescaling for continuum elements where the constitutive laws are

rescaled by a factor linearly proportional to the characteristic element size. The multiscale beam element formulation

has been validated against several experiments.
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1. INTRODUCTION

Civil engineering structures, such as bridges and buildings, are commonly analyzed using three-dimensional beam
elements. This approach is an easy pathway for model generation and postprocessing that provides member forces
employed in traditional design. On the other hand, analysisof concrete structures using three-dimensional contin-
uum elements that accounts for material non-linearities (Mohr et al., 2010) is quite rare and is reserved for special
applications due to the need for intensive computations.

Being one of the most important and commonly used construction materials, concrete has been the subject of
study since the beginning of the last century. Numerous material models for concrete have been developed, including
but limited to damage models (Willam and Warnke, 1974; Pijaudier-Cabot and Mazars, 2001), plasticity models (Lee
and Fenves, 1998), creep and shrinkage models employed in the design code (fib CEB-FIP, 2010; AASHTO, 2014),
and a combination of damage and plasticity models (Bazant etal., 2000; Cervenka and Cervenka, 2008; Grassl et al.,
2013) just to mention a few.

Reinforced concrete beam elements that account for nonlinearity of steel and concrete have been developed,
including a fiber-beam element that employs nonlinear uniaxial material model (Filippou et al., 1991), a reinforced
concrete beam that employs higher order quadrature scheme (Biondini, 2004), fiber-beam models that account for
shear and torsion loading (Mohr et al., 2010; Di Re et al., 2016), and more recently, a multiscale beam element that
considers three-dimensional constitutive models of steeland concrete (Moyeda and Fish, 2017).

Beam elements specific for prestressed concrete have been developed as well. Aalami (2000) coupled the pre-
stressing steel to the beam element using the tendon as a loadresisting element, which enables it to capture the
prestressing losses. Ayoub and Filippou (2010) used a fiber-beam element to model pretension concrete elements.
Ayoub (2011) extended the formulation to post-tension beams by using a link element between the fiber-
beam and tendon elements, but the shear stresses and prestress losses were not considered in the formula-
tion.
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The multiscale beam element for analysis of prestressed concrete proposed herein maintains the simplicity char-
acteristic to three-dimensional beam elements, while providing comparable accuracy of three-dimensional nonlinear
continuum elements. The proposed multiscale beam element accurately predicts the creep and shrinkage strains,
accounts for tendon losses and variable eccentricity, and captures both the shear and bending failures, all in the
computational efficient manner. To ensure simulation results are insensitive to the beam element size, a unique con-
stitutive law rescaling procedure that substantially differs from rescaling employed for continuum elements (Bazant
and Pijaudier-Cabot, 1989; Oliver, 1989; Liu et al., 2014) is also developed.

The outline of the article is as follows. Section 2 presents the theoretical underpinnings of the multiscale beam
element. Details and special considerations for the multiscale prestressed beam element are given in Section 3. A
constitutive law recalling procedure for the beam element is presented in Section 4. Numerical validation studies
against experimental data are conducted in Section 5. Conclusion and future research efforts are summarized in
Section 6.

2. MULTISCALE BEAM ELEMENT FORMULATION

A classical O(1) homogenization theory (Mori and Tanaka, 1973) is not sufficient for multiscale beam height, and
therefore, the classical assumption that the coarse-scalestrain is constant throughout the representative volume ele-
ments (RVE) domain is no longer valid. A modification of the classical O(1) homogenization theory for a prestressed
concrete beam of finite height is presented in this section.

2.1 Prestressed Concrete Multiscale Beam Element

The governing equations are stated at the scale of microconstituents, the reinforcing steel, prestressing steel and
concrete (Fish et al., 2012; Fish, 2014):

σζ
ij,j(x) + bζi (x) = 0 on Ωζ (1)

σζ
ij(x) = Lζ

ijkl(x)
(

εζkl(x)− µζ
kl(x)

)

on Ωζ (2)

εζij(x) = uζ
(i,j)(x) ≡

1
2

(

uζ
i,j + uζ

j,i

)

on Ωζ (3)

uζ
i (x) = ūζ

i (x) on ∂Ωuζ (4)

σζ
ij(x)n

ζ
j (x) = t̄ζi (x) on ∂Ωtζ (5)

Throughout this article, it is assumed that microconstituents are homogeneous. The superscriptζ denotes exis-
tence of fine-scale features.uζ

i denotes the displacements;εζij the total strain;σζ
ij the Cauchy stress;µζ

ij the inelastic

deformation eigenstrain; andLζ
ijkl the linear elastic fourth-order constitutive tensor that follows Hooke’s law.∂Ωuζ

and∂Ωtζ denote essential and natural boundaries, such that∂Ωζ = ∂Ωuζ ∪ ∂Ωtζ and∂Ωuζ ∩ ∂Ωtζ = ∅. Spatial
derivatives are denoted with a comma; symmetric derivatives are represented by brackets around the subscripts; and
Einstein summation convention over repeated indices is employed.

Following Fish and Kuznetzov (2010) and Oskay and Fish (2007), the beam displacements and strains are addi-
tively decomposed into the coarse-scale displacement and the fine-scale perturbation

uζ
i = uc

i + u1
i (6)

εζij = εcij + ε1
ij (7)

where the superscriptsc and 1 denote the coarse-scale field and fine-scale perturbation, respectively.
Similarly to Eqs. (6) and (7), the total eigenstrainµζ

ijcan be additively decomposed into mechanicalmechµij and
initial 0µij eigenstrains, the latter describing the initial effects ofprestressing, creep, shrinkage, and/or temperature

µζ
ij = mechµij + 0µij (8)
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Following Fish (2014) and Fish et al. (2012) and the decomposition of µζ
ij in Eq. (8), the perturbationu1

i and its
corresponding strain tensorε1

ij are given by:

u1
i = Hmn

i εcmn +

M̃∑

Φ=1

h̃
mn(Φ)
i

(

mechµ
(Φ)
mn + 0µ

(Φ)
mn

)

(9)

ε1
ij = Hmn

(i,j)ε
c
mn +

M̃∑

Φ=1

P
mn(Φ)
ij

(

mechµ
(Φ)
mn + 0µ

(Φ)
mn

)

(10)

µ(Φ) represents the coefficients of piecewise approximation of the eigenstrain (Oskay and Fish, 2007)

µξ
ij =

M̃∑

Φ=1

Ñ (Φ)µ
(Φ)
ij (11)

Ñ (Φ)(x) =

{
1
0

x ∈ ΘΦ

x /∈ ΘΦ (12)

whereM̃ is the number of RVE partitions and̃N (Φ) are the eigenstrain piecewise-constant shape functions. Fig-
ure 1 depicts the RVE partitions with each partition represented by a different color. Note that over each partition
eigenstrains are assumed to be constant.

FIG. 1: Unit cell showing partitions
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For the analysis of concrete, RVEs can be two-dimensional (2D) when no stirrups are present, or three-dimensional
(3D) when stirrups are present or having some periodical feature, such as castellated beams. In the present article,
we focus on two-dimensional RVEs with effective representation of stirrups using smearing procedure developed in
(Moyeda and Fish, 2017).

Following Fish (2014) and Fish et al. (2012), various influence functions,Hmn
k , h̃

mn(Φ)
k , P

mn(Φ)
kl are computed

by solving the following linear problems on the RVE domainΘ:
[

Lijkl

(

Hmn
(k,l) + Iklmn

)]

,j
= 0 on Θ (13)

∫

∂Θj

Hmn
k (∂Θj) dγ = 0 (14)

{

Lijkl

[

P
mn(Φ)
kl − I

(Φ)
klmn

]}

,j
= 0 on Θ (15)

P
mn(Φ)
kl ≡ h̃

mn(Φ)
(k,l) (16)

∫

∂Θj

h̃
mn(Φ)
k (∂Θj)dγ = 0 (17)

I
(Φ)
klmn = IklmnÑ

(Φ) (18)

whereIklmn is the fourth-order symmetric identity tensor and∂Θj is the boundary of the RVE.
Inserting Eq. (10) into Eq. (7), the total strainεζ can be written as:

εξkl = Emn
kl εcmn +

M̃∑

Φ=1

P
mn(Φ)
kl mµ(Φ)

mn +
M̃∑

Φ=1

P
mn(Φ)
kl 0µ

(Φ)
mn (19)

where the elastic strain influence functionEmn
kl is defined as:

Emn
kl =

(

Hmn
(k,l) + Iklmn

)

(20)

Inserting Eq. (19) into Eq. (2) and rearranging terms, the stressσζ is equal to:

σζ
ij = Lijkl



Emn
kl εmn +

M̃∑

Φ=1

(Pmn
kl − Iklmn)mechµ

Φ
mn



+ Lijkl

M̃∑

Φ=1

(Pmn
kl − Iklmn) 0µ

Φ
mn (21)

2.2 Coarse-Scale Weak Form Formulation

The coarse-scale weak form is obtained by substituting Eq. (21) into Eq. (1), premultiplying by the coarse-scale test
functionw and integrating over the coarse-scale domain, which yieldsthe following matrix form (matrices denoted
by bold letters)

∫

Ω

wT∇L



Eε+
M̃∑

Φ=1

(P− I)mechµ
Φ



 dΩ +

∫

Ω

wT∇L

M̃∑

Φ=1

(P− I) 0µ
ΦdΩ +

∫

Ω

wTbdΩ = 0 (22)

Applying Green’s theorem to the first term of Eq. (22) and rearranging terms yields

∫

Ω

∇wTL



Eε+

M̃∑

Φ=1

(P− I)mechµ
Φ



 dΩ =

∫

Γt

wT tdΓ +

∫

Ω

wTbdΩ +

∫

Ω

∇wTL

M̃∑

Φ=1

(P− I) 0µ
ΦdΩ (23)
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Note that the last term on the right-hand side of Eq. (23) is independent of the coarse-scale displacements; it
gives rise to an additional force term representing the effects of prestressing. See Appendix A for integration over the
composite domain when the RVE is not small when compared to the size of the coarse scale element.

The usual Galerkin approximation is employed for the coarse-scale discretization

wc = Ncwc

uc = Ncdc
(24)

∇sw
c = Bcwc

∇su
c ≡ εc = Bcwc (25)

where∇s is symmetric gradient operator;Nc andBc are coarse-scale shape functions and strain-displacementma-
trices, respectively;dc andwc are coarse-scale nodal displacements and nodal values of test functions, respectively.
The coarse-scale shape functions are given in the Appendix B.

Substituting Eqs. (24) and (25) into Eq. (23) and requiring arbitrariness of test functions yields the following
matrix equations:

rc = fcint − fcext = 0 (26)

fcint =

∫

Ω

BcT L



Eεc +

M̃∑

Φ=1

(P− I)mechµ
Φ





︸ ︷︷ ︸

σζ

dΩ (27)

fcext =

∫

Ω

NcT tdΓ +

∫

Ω

NcTbdΩ +

∫

Ω

BcTL

M̃∑

Φ=1

(P− I) 0µ
ΦdΩ (28)

Following Eq. (28), the effects of prestressing, creep, shrinkage, and/or temperature on the external force vector
are given by

f0 =

∫

Ω

BcTL

M̃∑

Φ=1

(P− I) 0µ
ΦdΩ (29)

In order to efficiently introduce the effect of the initial eigenstrains for nonlinear problems with evolving damage,
it is advantageous to expressBc as an expansion independent of RVE microstructure, which isthe focus of the next
section.

2.3 Representation of Coarse-Scale Strain

Since the largest dimension of RVE (i.e., the beam height) isnot infinitesimal in comparison to the beam span, it is
necessary to account for the variation of coarse-scale strain εcij over the RVE domain by expandingεcij as:

εcij = ε̄ij + ∂αε̄ijgα(x) + ∂αβε̄ijgαβ(x) + ∂αβγε̄ijgαβγ(x) + ∂αβγδε̄ijgαβγδ(x) (30)

where∂αε̄ij, ∂αβε̄ij, ∂αβγε̄ij , and∂αβγδε̄ij are defined as

∂αε̄ij = 〈∂αεij〉Θ (31)

∂αβε̄ij = 〈∂αβεij〉Θ (32)

∂αβγε̄ij = 〈∂αβγεij〉Θ (33)

∂αβγδε̄ij = 〈∂αβγδεij〉Θ (34)
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In the above, the operators∂αf , ∂αβf , ∂αβγf , and∂αβγδf are defined as

∂αf =
∂f

∂xα

(35)

∂αβf =
∂2f

∂xα∂xβ

(36)

∂αβγf =
∂3f

∂xα∂xβ∂xγ

(37)

∂αβγδf =
∂4f

∂xα∂xβ∂xγ∂xδ

(38)

where the bracket operator〈f〉Θ defines the average overΘ as

〈f〉Θ ≡ f̄ =
1
|Θ|

∫

Θ

f(x1, x2, x3)dΘ (39)

The functionsgα(x), gαβ(x), gαβγ(x), andgαβγδ(x) depend on the coarse-scale displacement field definition
for the beam element, and are summarized in Appendix B.

2.4 Tangent Stiffness Matrix

For multiscale analysis to be efficient, the coarse-scale strain-displacement matrixBc, needs to be expanded so that
various expansion terms would be independent of RVE coordinates, and thus, could be precomputed prior to nonlinear
analysis.

Following Eq. (30),Bc can be expanded as

Bc = B̄+ ∂αB̄gα(x) + ∂αβB̄gαβ(x) + ∂αβγB̄gαβγ(x) + ∂αβγδB̄gαβγδ(x) (40)

The functionsg(x) are dependent on the displacement field used for the definition of the coarse-scale beam
element. The reader is referred to Appendix B for the derivation of theg(x) family of functions for the third-order
beam theory (Heyliger and Reddy, 1988; Reddy, 1997) employed in this study.

The coarse-scale tangent stiffness matrix follows from Eqs. (26)–(28)

Kc =
∂rc

∂dc
=

∫

Ω

Bc ∂σ
ζ

∂dc
dΩ (41)

Differentiating Eq. (21) with respect to the nodal displacementsdc yields

∂σζ

∂d
= LζE

(
B̄+ ∂αB̄gα(x) + ∂αβB̄gαβ(x) +
∂αβγB̄gαβγ(x) + ∂αβγδB̄gαβγδ(x)

)

+ Lζ

M̃∑

Φ=1

(

P(Φ) − I(Φ)
) ∂mechµ

(Φ)

∂εc
∂εc

∂d
(42)

Note that(∂0µ
(Φ))/(∂εc) = 0 as it is independent of the coarse-scale displacements.

Inserting Eqs. (42) and (40) into Eq. (41), and accounting for the independence of̄B on the RVE coordinates, the
coarse-scale tangent stiffness matrix can be expressed by

Kc = Ab

∫

L







vB̄T
i (mLij)

vB̄j +
v B̄T

i





M̃∑

Φ=1

mA
(Φ)
ij

∂mµ(Φ)

∂εc



 vB̄j






dx1 (43)
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where
vB̄ =

{
B̄ ∂αB̄α ∂αβB̄αβ ∂αβγB̄αβγ ∂αβγδB̄αβγδ

}
(44)

mLij =
1
|Θ|

∫

Θ

gvi L
ζEgvj dΘ (45)

gv =
{

1 gα(x) gαβ(x) gαβγ(x) gαβγδ(x)
}

(46)

mA
(Φ)
ij =

1
|Θ|

∫

Θ

gvi L
ξ
(

P(Φ) − I(Φ)
)

gvj dΘ (47)

The value of(∂mµ(Φ))/(∂εc) depends on the constitutive models of microconstituents. One of the salient fea-
tures of the proposed nonlinear multiscale beam formulation is that a variety of materials models can be utilized
depending on the application without modifying the overallframework.

2.5 Force Vector for Initial Eigenstrains

It follows from the weak form described in Section 2.2 that the effects of initial eigenstrains, such as prestressing,
temperature, creep, and shrinkage, can be accounted for by introducing a force vector appearing in Eq. (29).

Inserting expansion ofBc in Eq. (40) into Eq. (29), the initial eigenstrain force vector f0 is given by

f0 =

∫

Ω

vB̄T
i

M̃∑

Φ=1

v
0A

(Φ)
i 0µ

(Φ)dΩ (48)

where
v
0A

(Φ)
i =

1
|Θ|

∫

Θ

gv
i L

ξ
(

P(Φ) − I(Φ)
)

dΘ (49)

2.6 Reduced Order Computational RVE Problem

At each Newton iteration of the coarse-scale solver, it is necessary to calculate the strain and eigenstrain in each
partition, for each Gauss point of the beam element. This is carried out by solving the reduced system of equations.
See Fish (2014) and Oskay and Fish (2007) for details.

Let ε(Ψ)
kl be the partition strain, which is the average ofεξkl in Eq. (19) over partitionΘ(Ψ), defined as

ε
(Ψ)
kl = E

mn(Ψ)
kl εcmn +

M̃∑

Φ=1

P
mn(ΨΦ)
kl mechµ

(Φ)
mn (50)

where

E
mn(Ψ)
kl =

1
∣
∣Θ(Ψ)

∣
∣

∫

Θ(Ψ)

Emn
kl dΘ (51)

P
mn(ΨΦ)
kl =

1
∣
∣Θ(Ψ)

∣
∣

∫

Θ(Ψ)

P
mn(Φ)
kl dΘ (52)

Equation (50) is solved using the fine-scale Newton method atthe RVE level nested with the coarse-scale Newton
method at the beam level. For details see Fish (2014); Oskay and Fish (2007), and Fish et al. (2015).
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3. PRESTRESSED BEAM ELEMENT

3.1 Prestressing Tendon Eccentricity

In the prestressed concrete beam, the position of the prestressing steel is changing along the beam so that the action
of the prestressing balances out the effect of external loadacting on the beam (Lin, 1963). Due to varying position
of prestressing, RVEs vary along the beam length. Figure 2 depicts a simply supported beam with a parabolic tendon
profile, showing the corresponding RVEs, in meshes consisting of 1, 2, and 4 coarse-scale (beam) elements.

For comparison, the equivalent load for a simply supported beam with a parabolic tendon profile is given by Lin
(1963):

weq =
8Py

S2
(53)

whereP is equal to prestress load,S is the beam span, and y is the cable sag at a midpoint measured from a line
passing through the cable end points. For a 10 m span beam, thetheoretical deflection is 6.98 mm, while the results
using two and four multiscale beam elements are 6.99 mm for anerror of 0.13%.

3.2 Initial Strain in Prestressed Steel

For the posttension beam, instantaneous losses in the prestressing force (Nilson, 1987) due to frictional forces and
anchorage slip, must be taken into account. Positions of RVEs depend on the number of coarse-scale elements (Fig. 2).
The prestressing force, less the losses due to friction and anchorage slip, is evaluated at the position of RVEs along
the span and the initial strain in the prestressing steel. The initial strain over the steel partitions is used in Eq. (48)to
calculate the equivalent loads for the element.

3.3 Consideration of Creep and Shrinkage

Creep and shrinkage has been recognized (Zia, 1979; Bazant,1998) as an intricate phenomenon in concrete structures.
Modern design codes (fib CEB-FIP, 2010), (AASHTO, 2014), provide estimates of creep and shrinkage strains. To
account for creep and shrinkage effects in the multiscale beam context, the appropriate strains in various partitions
throughout the time history must be considered. The eigenstrains induced due to creep and shrinkage are calculated
for every concrete partition, at every construction stage,and subsequently, time-varying equivalent force vector is
computed based on Eq. (48) throughout the coarse-scale analysis.

FIG. 2: Position of prestressing steel shown incircles, for a parabolic tendon profile in finite element meshes having 1, 2, and 4
beam elements
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4. REGULARIZATION OF THE MULTISCALE BEAM FORMULATION

Strain softening resulting from damage is known to give riseto mesh size dependency. Among the well-known regu-
larization techniques that circumvent (at least partially) solution dependence on the mesh size are nonlocal methods,
rescaling or smeared crack methods, and viscous regularization methods (Belytschko and Fish, 1988; Bazant and
Pijaudier-Cabot, 1989). From a practical point of view, smeared crack or rescaling approaches (Oliver, 1989; Bazant
and Pijaudier-Cabot, 1989; Cervera, 2008) are advantageous as they only require rescaling of constitutive equations
based on the mesh size. The basic idea of these approaches is as follows: when the blunt crack is formed as a result of
element removal (or reduction of stress to nearly zero valuewithout element removal) the energy removed from the
mesh divided by the new surface introduced should be invariant to the element size. It is a trivial exercise to show that
for this to be true, the area under the effective stress-strain curve has to be rescaled by a factor inversely proportional
to the characteristic size of the element. The rescaling by afactor proportional to characteristic element size is a
consequence of the fact that the volume of a continuum element removed divided by a new surface introduced is of
the order of characteristic element size.

In this section we show that for concrete beams, the rescaling factor should be different than for continuum
elements. Consider a beam of spanS (Fig. 3) subjected to a constant moment that is sufficiently large to induce
cracking. In the computational beam model, cracks are formed at the beam element quadrature points. Thus, a new
surface area introduced by cracking is equal to the product of the total number of quadrature points, the crack height,
and the beam width. The volume of the concrete (depicted by shaded areas in Fig. 3) where the stress drops to zero
(or nearly zero) can be approximated by a product of the distance between the two cracks oriented on the opposite
side of the beam, the crack height, and the beam width. Figure3 depicts the ratio of volume and surface area for the
beam discretized into 1, 2, 3, 4, and 5 elements of lengthLe.

The beam of two elements is considered,S = 2Le, as the baseline for which the constitutive equations were
calibrated to fit experimental data. In case of span to element size ratio different than 2, the material model needs to
be rescaled as follows:

R =

(
2Le

S

)
−0.64

(54)

FIG. 3: Ratio of cracked volume to crack surface area for different element lengths
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to provide the best fit of the volume to surface area ratios depicted in Fig. 3. In the next section we show that with the
rescaling introduced in Eq. (54), the results are nearly independent of the beam element length.

5. MODEL VALIDATION

5.1 Verification of Rescaling Approach

We first study the rescaling approach introduced in Eq. (54) by considering the beam tested by Saqan and Frosch
(2009). The beam is simply supported with a span of 4.06 m, a width of 356 mm, and a depth of 711 mm (Fig. 4).
The beam is reinforced with four 12.7 mm straight prestressing strands with an ultimate strength of 1862 MPa. The
concrete has a compressive strength of 52.1 MPa. For the constitutive modeling of concrete, we assume an isotropic
damage model proposed by Pijaudier-Cabot and Mazars (2001)with damage parameters At, Bt, Ac, and Bc obtained
using the following two-step procedure. We first reconstruct the stress-strain curves (in tension and compression)
based on the guidelines suggested in (fib CEB-FIP, 2010) for the specified concrete grade. Second, we employ inverse
optimization procedures to identify damage model parameters that provide the best fit to the reconstructed stress-strain
curves in step one. For the experimental beam in Saqan and Frosch (2009), the following material parameters were
used: modulus of elasticity= 30,411 MPa, Poisson’s ratio= 0.2, At= 2.0, Bt= 21,000, Ac= 1.6, and Bc= 1600.

For the finite element model, we consider two, four and six beam elements, and the material model is rescaled
by Eq. (54). The 30 mm displacement at a midspan is applied in 100 steps, and the results are shown in Fig. 5. It

FIG. 4: Beam test setup for simply supported rectangular beam

FIG. 5: Mesh sensitivity studies and comparison to ACI-318 code andexperimental results
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can be seen that without rescaling or with the classical rescaling proportional to the characteristic element size, the
results are highly sensitive to the mesh size. With the proposed rescaling, practically no mesh sensitivity is observed
and the numerical simulations results (tagged as RC2) are in good agreement with the experimental results. Figure5
also depicts the failure load based on the ACI-318 code (ACI,2014), which shows a reasonable agreement with the
experimental results.

5.2 Shear Test on TxDOT Type A Beam

We consider a simply supported I beam, a cross section known as the Texas Department of Transportation (TxDOT) A
beam, tested at the University of Houston (Laskar et. al., 2010). The beam is simply supported with a span of 7.32 m
and a depth of 713 mm (Fig. 6). The beam is reinforced with twelve 12.7 mm straight prestressing strands with an ulti-
mate strength of 1862 MPa. The beam is reinforced with four No. 5 rebars on the top and stirrups No. 2 at with 0.25 m
spacing. The reinforcing steel has a yield strength of 410 MPa and the concrete has a strength of 71MPa. The concrete
is modeled using isotropic damage model (Pijaudier-Cabot and Mazars, 2001) with the following material parameters:
modulus of elasticity= 41,700 MPa, Poisson’s ratio= 0.2, At= 1.5, Bt= 21,000, Ac= 1.9, and Bc= 1500.

The analysis was performed using four coarse-scale elements with the interior nodes located under loads and at a
midspan. The prescribed displacement of 35 mm was applied over 50 load increments at the points of load application.
The multiscale (RC2) simulation was compared in Fig. 7 with the experimental results (Laskar et al., 2010) and the
ACI-318 code (ACI, 2014). It can be seen that the multiscale beam accurately predicts the failure load and the overall
behavior of the beam, whereas the ACI-318 underestimates the capacity by more than 25%.

FIG. 6: Experimental setup and finite element model for the TxDOT A beam. Beam elements are shown in the center of the beam

FIG. 7: TxDOT Type A beam. Comparison of RC2, ACI-318 code and experimental results. Simulation results with no rescaling
and with classical rescaling are also shown
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5.3 Continuous Posttensioned Beam

A continuos posttensioned beam was tested at the RWTH AachenUniversity (Herbrand et al., 2018). The beam has a
rectangular cross section of a depth of 800 mm and a width of 250 mm. The beam has two tendons with a parabolic
profile (Fig. 8). Each prestressing tendon is made up of three0.6′′ strands with an ultimate load of 1950 MPa. The
beam is reinforced with six rebars 25 mm in diameter at the topand bottom; stirrups are 10 mm in diameter spaced
at 0.25 m; the yield stress for the rebars is 557 MPa for the longitudinal rebars, and 520 for the stirrups. The concrete
has a strength of 51 MPa with constitutive model based on the isotropic damage model (Pijaudier-Cabot and Mazars,
2001) with the following material parameters: modulus of elasticity= 25,824 MPa, Poisson’s ratio= 0.2, At= 1.1,
Bt = 15,000, Ac= 2.2, and Bc= 1500. The experimental setup is shown in Fig. 8.

The analysis was performed using four coarse-scale elements, a displacement under the loads was applied in 100
steps. Figure 9 depicts the load-deflection curves obtainedby the multiscale beam formulation and the ACI-318 code,
both of which are in good agreement with the experimental results.

FIG. 8: Experimental setup for continuous posttensioned beam

FIG. 9: Continuous posttensioned beam. Comparison of RC2, ACI-318 code, and experimental results
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6. CONCLUSIONS

A multiscale prestressed beam element for the analysis of prestressed concrete was developed. The multiscale beam
element is capable of capturing flexural, shear, and torsionmodes of failure. Prestressing tendons with variable ec-
centricity are accommodated by the formulation, and effects due to creep and shrinkage are considered. In terms
of computational cost, the multiscale beam has a fraction ofdegrees-of-freedom in comparison to the full 3D solid
modeling at the scale of reinforcement. It is instructive topoint out that the failure load predicted by the multiscale
beam element and that recommended by the ACI-318 code are in good agreement for a rectangular beam cross-
section. However, for non-rectangular cross-sections, the failure load predicted by the ACI-318 code is shown to be
inaccurate. This confirms the observations made in Herbrandet al. (2018).

Finally, a simple rescaling methodology for the multiscalebeam element, which differs from the classical
rescaling approach for continuum elements, is developed and renders simulation results nearly mesh size insensi-
tive.

Future research efforts will focus on the development of multiscale shell element for reinforced and prestressed
concrete, consideration of bond-slippage effects betweenthe concrete and rebar, and three phase formulation, where
the concrete is considered as a two-scale material.
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APPENDIX A. NONLOCAL QUADRATURE

If the RVE is not infinitesimally small in the direction of theaxis, when compared to the coarse scale element length,
which would be the case when an irregular pattern of stirrupsis to be analyzed, classical homogenization that assumes
a constant strain through the RVE is not appropriate, the method of reduced order of computational continua RC2 (Fish
and Kuznetzov, 2010; Fish et al., 2012, 2015) solves the problem of scale separation.
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The RVE’s used for the analysis of prestressed beams have a finite size equal to the beam depth and width, and it
is infinitesimal small in the axial direction.

In case of an infinitesimal RVE domain, the classical two-scale integration scheme given by

lim
ζα→0

+

∫

Ως
X

fζ(X,Y)dΩ = lim
ζα→0

+
N∑

i=1

∫

ΘY

1
|ΘY |

Je(xI)WIf
ζ(xI ,Y)dΘ (A.1)

In Eq. (A.1) the gauss points coincide with classical gauss quadrature points.
When one or more dimensions are comparable to the size of the coarse scale element, Eq. (A.1) has to be replaced

by the nonlocal quadrature scheme, positions of the integration points and their weighs are a function of the RVE size,
and follow (Fish and Kuznetzov, 2010; Fish, 2014; Fish et al., 2015):

∫

Ως
X

f(X)dΩ =
N̂∑

i=1

∫

Θx̂I

1
|Θx̂I

|J
e(x̂I , χ)ŴIf

ζ(x̂I , χ)dΘ (A.2)

where the positions of the nonlocal quadrature points are expressed aŝxI , the weightsŴI andJe is the Jacobian of
the coarse scale element. Table A.1 list the position of the non-local quadrature points and their weights as a function
of the RVE expressed asΘ′ = Θ/Je (Fish, 2014; Fish and Kuznetzov, 2010).

APPENDIX B. COARSE-SCALE DISPLACEMENT FIELD

The higher order beam theory presented by Heyliger and Reddy(1988) and Reddy (1997) has 18 degrees of freedom
(dof’s), eight dof’s in each end node and two additional dof’s in the middle node that can be condensed out from the
solution; such that the displacements are expressed as:







cu1
cu2
cu3






= Nc

{
c
0u

1
1

c
0u

1
2

c
0u

1
3 θ1

1 θ1
2 θ1

3 γ1
2 γ1

3
c
0u

2
1

c
0u

2
2

c
0u

2
3 θ2

1 θ2
2 θ2

3 γ2
2 γ2

3 γ3
2 γ3

3

}T
(B.1)

wherecui denotes the three-dimensional displacements;c
0ui the displacement at the centerline of the beam in direction

x1; andθ1 the rotation around thex1; θ2 = (∂cu0
3)/(∂x1) andθ3 = (∂cu0

2)/(∂x1). γ2 andγ3 are the cross-sectional
rotations around thex2 andx3, respectively.

The shape functions used to describe the displacement field in Eq. (B.1) are:

TABLE A.1: Positions and Weights of Nonlocal Quadrature Points

Number of Gauss Points
Positions of the nonlocal

gauss points (ξI)
Nonlocal weights (Ŵ I )

2-Point rule ξ1,2 = ±
√

1
3
− Θ′2

12
Ŵ1,2 = 1

3-Point rule
ξ1,3 = ±

√
60− 35Θ′2

10

ξ2 = 0

Ŵ1,3 =
5(4−Θ′2)

3(12− 7Θ′2)

Ŵ2 = 2− 2Ŵ1
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Nc =
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(B.2)

The family ofg(x) functions corresponding to the Heyliger and Reddy (1988) and Reddy (1997) beam formula-
tion are obtained by substituting the known values in Eq. (40) and solving for theg(x) functions, which yields

g1 = 0 (B.3)

g2 = x2 (B.4)

g3 = x3 (B.5)
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g11 = 0 (B.6)

g12 = x1x2 (B.7)

g13 = x1x3 (B.8)
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