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A multiscale beam element for the analysis of prestressed concrete that accounts for the initial effects of prestressing,
creep, shrinkage, and temperature was developed within the framework of the reduced order computational continua
(RC?), which accounts for representative volume elements (RVEs) of finite size. A constitutive law rescaling approach
for the multiscale beams that renders the formulation nearly invariant to the beam element length was developed. The
proposed rescaling approach differs from the classical rescaling for continuum elements where the constitutive laws are
rescaled by a factor linearly proportional to the characteristic element size. The multiscale beam element formulation
has been validated against several experiments.
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1. INTRODUCTION

Civil engineering structures, such as bridges and buikjiage commonly analyzed using three-dimensional beam
elements. This approach is an easy pathway for model gémeid postprocessing that provides member forces
employed in traditional design. On the other hand, analysisoncrete structures using three-dimensional contin-
uum elements that accounts for material non-linearitiest(iMet al., 2010) is quite rare and is reserved for special
applications due to the need for intensive computations.

Being one of the most important and commonly used constructiaterials, concrete has been the subject of
study since the beginning of the last century. Numerous mahtaodels for concrete have been developed, including
but limited to damage models (Willam and Warnke, 1974; RijiaaCabot and Mazars, 2001), plasticity models (Lee
and Fenves, 1998), creep and shrinkage models employed @reign code (fib CEB-FIP, 2010; AASHTO, 2014),
and a combination of damage and plasticity models (Bazaait,&#000; Cervenka and Cervenka, 2008; Grassl et al.,
2013) just to mention a few.

Reinforced concrete beam elements that account for namltgeof steel and concrete have been developed,
including a fiber-beam element that employs nonlinear uaiawaterial model (Filippou et al., 1991), a reinforced
concrete beam that employs higher order quadrature schgimed{ni, 2004), fiber-beam models that account for
shear and torsion loading (Mohr et al., 2010; Di Re et al.6204nd more recently, a multiscale beam element that
considers three-dimensional constitutive models of stediconcrete (Moyeda and Fish, 2017).

Beam elements specific for prestressed concrete have beelopgied as well. Aalami (2000) coupled the pre-
stressing steel to the beam element using the tendon as adsiating element, which enables it to capture the
prestressing losses. Ayoub and Filippou (2010) used a fieam element to model pretension concrete elements.
Ayoub (2011) extended the formulation to post-tension edy using a link element between the fiber-
beam and tendon elements, but the shear stresses and gwdssses were not considered in the formula-
tion.

1543-1649/18/$35.00 © 2018 by Begell House, Inc. www.Hagake.com 285



286 Moyeda & Fish

The multiscale beam element for analysis of prestressedtetmproposed herein maintains the simplicity char-
acteristic to three-dimensional beam elements, whileighog comparable accuracy of three-dimensional nonlinear
continuum elements. The proposed multiscale beam elententately predicts the creep and shrinkage strains,
accounts for tendon losses and variable eccentricity, aptuces both the shear and bending failures, all in the
computational efficient manner. To ensure simulation tesarke insensitive to the beam element size, a unique con-
stitutive law rescaling procedure that substantiallyedgffrom rescaling employed for continuum elements (Bazant
and Pijaudier-Cabot, 1989; Oliver, 1989; Liu et al., 204also developed.

The outline of the article is as follows. Section 2 presengstheoretical underpinnings of the multiscale beam
element. Details and special considerations for the nualiésprestressed beam element are given in Section 3. A
constitutive law recalling procedure for the beam elemeniresented in Section 4. Numerical validation studies
against experimental data are conducted in Section 5. Gsiod and future research efforts are summarized in
Section 6.

2. MULTISCALE BEAM ELEMENT FORMULATION

A classical O(1) homogenization theory (Mori and Tanak&,3)9s not sufficient for multiscale beam height, and
therefore, the classical assumption that the coarse-straie is constant throughout the representative volume el
ments (RVE) domain is no longer valid. A modification of thasdical O(1) homogenization theory for a prestressed
concrete beam of finite height is presented in this section.

2.1 Prestressed Concrete Multiscale Beam Element

The governing equations are stated at the scale of microtuerds, the reinforcing steel, prestressing steel and
concrete (Fish et al., 2012; Fish, 2014):

05, i(x) +b5(x) =0 on QF )

07 (%) = Lijy (x) (5121 (x) — 1y (X)) on Q¢ @)
5%(X) = ua ,)(x) = % (ufj =+ ufl) on OF (3)
ug(x) =ag(x) on 9N @)
of,(x)nf (x) = f(x) on 90 )

Throughout this article, it is assumed that microconstits@re homogeneous. The superscaiigenotes exis-
tence of fine-scale features: denotes the displacement%t the total strainnfj the Cauchy stres$cfj the inelastic

deformation eigenstrain; arfdfjkl the linear elastic fourth-order constitutive tensor tiudlofvs Hooke’s law9Qu¢
andoQ!¢ denote essential and natural boundaries, suchafiat= 9Q"¢ U 9Q¢¢ andoN*¢ N 9N = (). Spatial
derivatives are denoted with a comma; symmetric derivatare represented by brackets around the subscripts; and
Einstein summation convention over repeated indices idarad.
Following Fish and Kuznetzov (2010) and Oskay and Fish (2a8@ beam displacements and strains are addi-
tively decomposed into the coarse-scale displacementreniihte-scale perturbation
ul = uf 4+ ul (6)

P =

= €5+ szlj (7)

ij

£

where the superscriptsand 1 denote the coarse-scale field and fine-scale pertumbegspectively.
Similarly to Egs. (6) and (7), the total eigenstraij;can be additively decomposed into mechanigal, 11;; and
initial op;; eigenstrains, the latter describing the initial effectpm@stressing, creep, shrinkage, and/or temperature

Hicj = mechMij + oMij (8)
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Following Fish (2014) and Fish et al. (2012) and the decoiitipasof u in Eq. (8), the perturbation} and its
corresponding strain tensaﬂrJ are given by:

N
U = Hmn . Z (mechugn'r)b +0H(<I>)> (9)
d=1
HE e, E P (el + onls) (10)

1(®) represents the coefficients of piecewise approximatioh@gigenstrain (Oskay and Fish, 2007)

M
uby = Z T (11)
-~ 1 x € 0%
(®) _
N (X) - { 0 X ¢ @@ (12)

where M is the number of RVE partitions andi(®) are the eigenstrain piecewise-constant shape functiogs. F
ure 1 depicts the RVE partitions with each partition repnése by a different color. Note that over each partition
eigenstrains are assumed to be constant.

FIG. 1: Unit cell showing partitions
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For the analysis of concrete, RVES can be two-dimensiogl\izhen no stirrups are present, or three-dimensional
(3D) when stirrups are present or having some periodicalifeasuch as castellated beams. In the present article,
we focus on two-dimensional RVEs with effective represtomeof stirrups using smearing procedure developed in
(Moyeda and Fish, 2017).

Following Fish (2014) and Fish et al. (2012), various infleefunctions H"", IEZ"’(‘P), P,:l“"(‘b) are computed
by solving the following linear problems on the RVE doméin

[Lijkl (H(’Z,’f) + Iklmn)} =0 on 6 (13)
/ H;Cnn (8@,) dy =0 (14)
{Lijkl [p;?n(@) _ Ilfn)m}} =0 on © (15)
Py = Y (16)
/ B?n(q))((?@j)dy =0 (17)

00,
Ilgln)zn - IklmnN(CD) (18)

wherely;.,.,, is the fourth-order symmetric identity tensor a®@; is the boundary of the RVE.
Inserting Eq. (10) into Eq. (7), the total straif can be written as:

M M
€5 = B e + Y P ) + > B o) (19)
=1 =1

where the elastic strain influence functiij;” is defined as:

Inserting Eq. (19) into Eq. (2) and rearranging terms, thesst:¢ is equal to:

M M
05 = Liji | Bi"emn + > (Pi™ = Tttmn) meenMan | + Lijrr Y (PR = Tkimn) ol (21)
=1 =1

2.2 Coarse-Scale Weak Form Formulation

The coarse-scale weak form is obtained by substituting Zk.iito Eq. (1), premultiplying by the coarse-scale test
functionw and integrating over the coarse-scale domain, which yisled$ollowing matrix form (matrices denoted
by bold letters)
M M
/WTVL Ee+ Y (P—1)peann® | d2+ /wTv > (P -T)ou®d+ /wadQ 0 (22)
¢ P=1 $=1

Applying Green’s theorem to the first term of Eq. (22) and r&aging terms yields

5 5
/VWTL Ee+ > (P—1)penu® | d2 = /thdF+ /wadQ+/vW LY (P-T)ou®dQ (23)
Q *=1 I Q Q =1
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Note that the last term on the right-hand side of Eq. (23) éependent of the coarse-scale displacements; it
gives rise to an additional force term representing thectffef prestressing. See Appendix A for integration over the
composite domain when the RVE is not small when comparedetsitte of the coarse scale element.

The usual Galerkin approximation is employed for the coacsde discretization

w’ = N°w
c cqc (24)
u® = N-°d
V,w® =B“w*
(25)

V,uf = e = Bw°

whereV , is symmetric gradient operatdN© andB¢ are coarse-scale shape functions and strain-displacement
trices, respectivelyl® andw® are coarse-scale nodal displacements and nodal valuest éditetions, respectively.
The coarse-scale shape functions are given in the Appendix B

Substituting Egs. (24) and (25) into Eqg. (23) and requiringteariness of test functions yields the following
matrix equations:

I‘ - fzcnt femt - 0 (26)
N
e, = / BTL | Ee° Z — 1) meent® | d2 (27)
Q =1
ot
Nt
fo, = / NTtdl + / NTbd) + / B LY (P —T)ou® (28)
Q H=1

Following Eg. (28), the effects of prestressing, creepnglage, and/or temperature on the external force vector
are given by

M
fo= [BTLY. (P-Doy® (29)
Q o=1

In order to efficiently introduce the effect of the initiageinstrains for nonlinear problems with evolving damage,
it is advantageous to expreBs$ as an expansion independent of RVE microstructure, whittheigocus of the next
section.

2.3 Representation of Coarse-Scale Strain

Since the largest dimension of RVE (i.e., the beam heighiptsnfinitesimal in comparison to the beam span, it is
necessary to account for the variation of coarse-scalistfaover the RVE domain by expanding; as:

€5 = €ij + 0u€ijga(X) + Oup€ijgap (X) + Oupyijgapy(X) + Oupys€ijguapys(X) (30)

whered€j, Oxp€ijr Oxpy Eijr ANd0xpsE;; are defined as

8oczij = <aoc£ij>(—) (31)
daptij = (Ouptij)e (32)
DapyEij = (DapvEijle (33)
Dapystij = (Dapystij)e (34)
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In the above, the operatods, f, Oxp f, Oxpy f, @aNA04ps f are defined as
of

0%f
9enS = G (36)
3f
Oapy ] = 0x 0302 (37)
0*f
Oapysf = 0z« 002,015 (38)

where the bracket operat¢f), defines the average overas
- 1
No=1= g [ Havwaraio (39)
e

The functionsy« (x), gup (X), 9apy (X), andg«ps(x) depend on the coarse-scale displacement field definition
for the beam element, and are summarized in Appendix B.

2.4 Tangent Stiffness Matrix

For multiscale analysis to be efficient, the coarse-scadénstlisplacement matriBB¢, needs to be expanded so that
various expansion terms would be independent of RVE coatéf) and thus, could be precomputed prior to nonlinear
analysis.

Following Eqg. (30) B¢ can be expanded as

B°=B+ &XBg“(x) + aocBBgocB(x) + 8ocBYBgoc[3v(x) + aaﬁvéﬁgaﬁvé(x) (40)

The functionsg(x) are dependent on the displacement field used for the definifiche coarse-scale beam
element. The reader is referred to Appendix B for the danowadf the g(x) family of functions for the third-order
beam theory (Heyliger and Reddy, 1988; Reddy, 1997) emgloy#his study.

The coarse-scale tangent stiffness matrix follows from E28)—(28)

. ore .00¢
K_adc_/B adch (41)

Q

Differentiating Eq. (21) with respect to the nodal displaemtsd® yields

dot B + 04Bygu(x) + 0apBgap (x) + ) < Omecnit'®) De
i e ) ‘o PG xBDYIxp + LS P(®) _(®)) Zmech® 42
od ( 8“ﬁyBg(xm(x) + 8“m5Bgam5(x) <I>Z—1 ( ) Oe¢ od (42)

Note that(9ou(®))/(9e°) = 0 as it is independent of the coarse-scale displacements.
Inserting Egs. (42) and (40) into Eqg. (41), and accountimgtfe independence @ on the RVE coordinates, the
coarse-scale tangent stiffness matrix can be expressed by

_ I .7 @\ _
K® = A, / {UB? ("Li;) "B, +'BT (Z mA§f>8’g%) ”Bj}dxl 43)

7 d=1
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where
UB:{ B 0aBa 80683068 OupyBapy OupysBapys } (44)
1 14
ML = @ gL Eg?dO (45)
©
9" ={1 ga(x) gap(®X) Gapy(X) gapys(x) } (46)
A = / —I®) gvde 47
o )9 (47)

The value of(9,,u(®))/(9e°) depends on the constitutive models of microconstituents @ the salient fea-
tures of the proposed nonlinear multiscale beam formulatahat a variety of materials models can be utilized
depending on the application without modifying the ovefi@mework.

2.5 Force Vector for Initial Eigenstrains

It follows from the weak form described in Section 2.2 that #ffects of initial eigenstrains, such as prestressing,
temperature, creep, and shrinkage, can be accounted fotrbgicing a force vector appearing in Eg. (29).
Inserting expansion dB¢ in Eq. (40) into Eq. (29), the initial eigenstrain force \@cfy is given by

M
fo= / Ty 5A®ou®d0 (48)
d=1

Q

where
1

v A (P)
OAi | |

gL (P<<I>> _ I(‘I’))d@ (49)

C\

2.6 Reduced Order Computational RVE Problem

At each Newton iteration of the coarse-scale solver, it isessary to calculate the strain and eigenstrain in each
partition, for each Gauss point of the beam element. Thiarged out by solving the reduced system of equations.
See Fish (2014) and Oskay and Fish (2007) for details.

Let 5kl ¥) be the partition strain, which is the averagez@,fm Eq. (19) over partitio®(¥), defined as

i
en) = B e + 3 Pa" " mecnili (50)
=1
where
B = Ex / Enmde (51)
o)
mn(¥P) 1 mn(®)
Py = o] P de (52)
o)

Equation (50) is solved using the fine-scale Newton methtukesiRVE level nested with the coarse-scale Newton
method at the beam level. For details see Fish (2014); Oskéyizh (2007), and Fish et al. (2015).
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3. PRESTRESSED BEAM ELEMENT
3.1 Prestressing Tendon Eccentricity

In the prestressed concrete beam, the position of the pssgtyg steel is changing along the beam so that the action
of the prestressing balances out the effect of external datidg on the beam (Lin, 1963). Due to varying position
of prestressing, RVEs vary along the beam length. Figurepitiea simply supported beam with a parabolic tendon
profile, showing the corresponding RVESs, in meshes congisif 1, 2, and 4 coarse-scale (beam) elements.

For comparison, the equivalent load for a simply supportahiowith a parabolic tendon profile is given by Lin
(1963):

(53)

where P is equal to prestress load, is the beam span, and y is the cable sag at a midpoint measoradfline
passing through the cable end points. For a 10 m span beamhetheetical deflection is 6.98 mm, while the results
using two and four multiscale beam elements are 6.99 mm ferran of 0.13%.

3.2 Initial Strain in Prestressed Steel

For the posttension beam, instantaneous losses in thegasag force (Nilson, 1987) due to frictional forces and
anchorage slip, must be taken into account. Positions ofsRiépend on the number of coarse-scale elements (Fig. 2).
The prestressing force, less the losses due to friction adkdasage slip, is evaluated at the position of RVEs along
the span and the initial strain in the prestressing sted.iftitial strain over the steel partitions is used in Eq. (#8)
calculate the equivalent loads for the element.

3.3 Consideration of Creep and Shrinkage

Creep and shrinkage has been recognized (Zia, 1979; BA2&&) as an intricate phenomenon in concrete structures.
Modern design codes (fib CEB-FIP, 2010), (AASHTO, 2014)yvjte estimates of creep and shrinkage strains. To

account for creep and shrinkage effects in the multiscaderbeontext, the appropriate strains in various partitions

throughout the time history must be considered. The eigainstinduced due to creep and shrinkage are calculated
for every concrete partition, at every construction stagel subsequently, time-varying equivalent force vector is

computed based on Eq. (48) throughout the coarse-scalgsanal

— S

\.\ | /

T T

FIG. 2: Position of prestressing steel showrrircles for a parabolic tendon profile in finite element meshes tgatin2, and 4
beam elements
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4. REGULARIZATION OF THE MULTISCALE BEAM FORMULATION

Strain softening resulting from damage is known to give tismesh size dependency. Among the well-known regu-
larization techniques that circumvent (at least partjaiylution dependence on the mesh size are nonlocal methods,
rescaling or smeared crack methods, and viscous regularizaethods (Belytschko and Fish, 1988; Bazant and
Pijaudier-Cabot, 1989). From a practical point of view, aneel crack or rescaling approaches (Oliver, 1989; Bazant
and Pijaudier-Cabot, 1989; Cervera, 2008) are advantagepthey only require rescaling of constitutive equations
based on the mesh size. The basic idea of these approackdslisws: when the blunt crack is formed as a result of
element removal (or reduction of stress to nearly zero vaitieout element removal) the energy removed from the
mesh divided by the new surface introduced should be invetiiethe element size. It is a trivial exercise to show that
for this to be true, the area under the effective stres#asttave has to be rescaled by a factor inversely proportiona
to the characteristic size of the element. The rescaling factor proportional to characteristic element size is a
consequence of the fact that the volume of a continuum eleraeroved divided by a new surface introduced is of
the order of characteristic element size.

In this section we show that for concrete beams, the regc#dictor should be different than for continuum
elements. Consider a beam of sp&ir{Fig. 3) subjected to a constant moment that is sufficierstigé to induce
cracking. In the computational beam model, cracks are fdratehe beam element quadrature points. Thus, a new
surface area introduced by cracking is equal to the produbedotal number of quadrature points, the crack height,
and the beam width. The volume of the concrete (depicted gleshareas in Fig. 3) where the stress drops to zero
(or nearly zero) can be approximated by a product of the mistdetween the two cracks oriented on the opposite
side of the beam, the crack height, and the beam width. Fgjdepicts the ratio of volume and surface area for the
beam discretized into 1, 2, 3, 4, and 5 elements of lefigth

The beam of two elements is consideréd—= 2L, as the baseline for which the constitutive equations were
calibrated to fit experimental data. In case of span to el¢siea ratio different than 2, the material model needs to
be rescaled as follows:

—0.64
p_ (2L 54
Number
of Volume
Area
Elements
é\/@ herack W
3
1 e =0.288675 S
| | 21 loyaee W pan
L (3+/3)) Span hegaere W
5 5 crack _ .
2 | | | | bW B W 0.197169 Span
L (6+\/?) Span heaee W
3 9 crac) -o. <
| | | | | | oW Do, W 0.143186 Span
1
& 9+\/§] Span hepaee W
1 —_a
4 | | | | | | | | bW Do, W 0.111792 Span
L (124/3)) Span heaere W
5 B R _0.091547 $
I | l | I | | | I | ZXS llcraCk w pall

FIG. 3: Ratio of cracked volume to crack surface area for differéamnent lengths
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to provide the best fit of the volume to surface area ratiogctieghin Fig. 3. In the next section we show that with the
rescaling introduced in Eq. (54), the results are nearlgpethdent of the beam element length.

5. MODEL VALIDATION
5.1 Verification of Rescaling Approach

We first study the rescaling approach introduced in Eq. (34¢dnsidering the beam tested by Sagan and Frosch
(2009). The beam is simply supported with a span of 4.06 mdéhwaf 356 mm, and a depth of 711 mm (Fig. 4).
The beam is reinforced with four 12.7 mm straight prestregstrands with an ultimate strength of 1862 MPa. The
concrete has a compressive strength of 52.1 MPa. For théitadime modeling of concrete, we assume an isotropic
damage model proposed by Pijaudier-Cabot and Mazars (2dtjlamage parameters At, Bt, Ac, and Bc obtained
using the following two-step procedure. We first recongtthe stress-strain curves (in tension and compression)
based on the guidelines suggested in (fib CEB-FIP, 2010héospecified concrete grade. Second, we employ inverse
optimization procedures to identify damage model pararaétat provide the best fit to the reconstructed stresgistra
curves in step one. For the experimental beam in Sagan asdh-(2009), the following material parameters were
used: modulus of elasticity 30,411 MPa, Poisson’s ratie 0.2, At= 2.0, Bt= 21,000, Ac= 1.6, and Bc= 1600.

For the finite element model, we consider two, four and sixtbefements, and the material model is rescaled
by Eqg. (54). The 30 mm displacement at a midspan is appliedinsteps, and the results are shown in Fig. 5. It

2032 2032

FIG. 4: Beam test setup for simply supported rectangular beam

Verification of Rescaling Factor
Load at

Midspan
(KN)
600 |
—&— Experimental
500 ) e Shear failure load per ACI-318
FAW*“’“"“ e ' RC?L,=2m  R=1.0 (Per Eq.54)

400 | —s— RC?>L,=lm  R=1.56 (Per Eq.54)

v RC? L.=1m R=1.0 (No Rescaling)

300 RC? L.=1lm R=2.0 (Classical Rescaling)
z —=— RC? [,=0.67m R=2.02 (Per Eq.54)
2000 j RC? £,=0.67m R=1.0 (No Rescaling)
é( RC? L,=0.67m R=3.0 (Classical Rescaling)

|
100 #
|

. L L L L ~—  OMidspan (M)
5 10 15 20 25 30

FIG. 5: Mesh sensitivity studies and comparison to ACI-318 codeexperimental results
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can be seen that without rescaling or with the classicabieggproportional to the characteristic element size, the
results are highly sensitive to the mesh size. With the pgedaescaling, practically no mesh sensitivity is observed
and the numerical simulations results (tagged a$)R@: in good agreement with the experimental results. Figure
also depicts the failure load based on the ACI-318 code (2C14), which shows a reasonable agreement with the
experimental results.

5.2 Shear Test on TxDOT Type A Beam

We consider a simply supported | beam, a cross section knswhedalexas Department of Transportation (TxDOT) A
beam, tested at the University of Houston (Laskar et. allp20The beam is simply supported with a span of 7.32 m
and a depth of 713 mm (Fig. 6). The beam is reinforced withwe/&PR.7 mm straight prestressing strands with an ulti-
mate strength of 1862 MPa. The beam is reinforced with fourANebars on the top and stirrups No. 2 at with 0.25 m
spacing. The reinforcing steel has a yield strength of 41@ kil the concrete has a strength of 71MPa. The concrete
is modeled using isotropic damage model (Pijaudier-Catdtdazars, 2001) with the following material parameters:
modulus of elasticity= 41,700 MPa, Poisson’s ratie 0.2, At= 1.5, Bt= 21,000, Ac= 1.9, and Bc= 1500.

The analysis was performed using four coarse-scale elsmaithtthe interior nodes located under loads and at a
midspan. The prescribed displacement of 35 mm was appliedb®oad increments at the points of load application.
The multiscale (R€) simulation was compared in Fig. 7 with the experimentalitegLaskar et al., 2010) and the
ACI-318 code (ACI, 2014). It can be seen that the multiscakenb accurately predicts the failure load and the overall
behavior of the beam, whereas the ACI-318 underestimagesagpacity by more than 25%.

P p
- 245 - 242 - 245 s

FIG. 6: Experimental setup and finite element model for the TXDOT ArbeBeam elements are shown in the center of the beam

TxDOT Type A beam test
Shear Force (KN)

400 |-

—o— Experimental
300 ACI-318 Shear strength
—o— RC? (Rescaling per Eq. 54)
—+— RC2 (Rescaling Classical)

200

—v— RC? (No Rescaling)

100

L L L L L

15 20 25 30

dl\[idspnn (1mm)

FIG. 7: TxDOT Type A beam. Comparison of RC2, ACI-318 code and expenital results. Simulation results with no rescaling
and with classical rescaling are also shown
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5.3 Continuous Posttensioned Beam

A continuos posttensioned beam was tested at the RWTH Addhisersity (Herbrand et al., 2018). The beam has a
rectangular cross section of a depth of 800 mm and a width @@%. The beam has two tendons with a parabolic
profile (Fig. 8). Each prestressing tendon is made up of tAr&estrands with an ultimate load of 1950 MPa. The
beam is reinforced with six rebars 25 mm in diameter at theatup bottom; stirrups are 10 mm in diameter spaced
at 0.25 m; the yield stress for the rebars is 557 MPa for thgitodinal rebars, and 520 for the stirrups. The concrete
has a strength of 51 MPa with constitutive model based orstitedpic damage model (Pijaudier-Cabot and Mazars,
2001) with the following material parameters: modulus afséicity = 25,824 MPa, Poisson’s ratie 0.2, At= 1.1,
Bt = 15,000, Ac= 2.2, and Bc= 1500. The experimental setup is shown in Fig. 8.

The analysis was performed using four coarse-scale elspedisplacement under the loads was applied in 100
steps. Figure 9 depicts the load-deflection curves obtdigdékde multiscale beam formulation and the ACI-318 code,
both of which are in good agreement with the experimentalligs

225 350 350 225

FIG. 8: Experimental setup for continuous posttensioned beam

Continuous beam test
Test Load (KN)

1400 F

1200
1000

800

I--"“‘--Il
RO

Illlllo
L PN [T ] 1]

600

100}

200F

OTnder the load (INN)
5 10 15 20 25 30 a5 Under the load

—— Experimental - RC?* —— Failure per AC1-318

FIG. 9: Continuous posttensioned beam. Comparison of, RCI-318 code, and experimental results
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6. CONCLUSIONS

A multiscale prestressed beam element for the analysisesti@ssed concrete was developed. The multiscale beam
element is capable of capturing flexural, shear, and tonsiodes of failure. Prestressing tendons with variable ec-
centricity are accommodated by the formulation, and effelcte to creep and shrinkage are considered. In terms
of computational cost, the multiscale beam has a fractiathegfees-of-freedom in comparison to the full 3D solid
modeling at the scale of reinforcement. It is instructiveptint out that the failure load predicted by the multiscale
beam element and that recommended by the ACI-318 code areoih &greement for a rectangular beam cross-
section. However, for non-rectangular cross-sectioresfaliure load predicted by the ACI-318 code is shown to be
inaccurate. This confirms the observations made in Herbetad (2018).

Finally, a simple rescaling methodology for the multischlsam element, which differs from the classical
rescaling approach for continuum elements, is developdd-@mders simulation results nearly mesh size insensi-
tive.

Future research efforts will focus on the development oftisedle shell element for reinforced and prestressed
concrete, consideration of bond-slippage effects betwleeigoncrete and rebar, and three phase formulation, where
the concrete is considered as a two-scale material.
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APPENDIX A.  NONLOCAL QUADRATURE

If the RVE is not infinitesimally small in the direction of tlais, when compared to the coarse scale element length,
which would be the case when an irregular pattern of stirisifgsbe analyzed, classical homogenization that assumes
a constant strain through the RVE is not appropriate, th@austf reduced order of computational continua?ieish

and Kuznetzov, 2010; Fish et al., 2012, 2015) solves thel@nobf scale separation.
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The RVE’s used for the analysis of prestressed beams haviéessiire equal to the beam depth and width, and it
is infinitesimal small in the axial direction.

In case of an infinitesimal RVE domain, the classical twdesaategration scheme given by

Je .T[ W]f ($], )d@ (Al)

11m+/f XYdQ—hm—i—Z/

In Eq. (A.1) the gauss points coincide with classical gausslgature points.

When one or more dimensions are comparable to the size obtreescale element, Eq. (A.1) has to be replaced
by the nonlocal quadrature scheme, positions of the intiegrpoints and their weighs are a function of the RVE size,
and follow (Fish and Kuznetzov, 2010; Fish, 2014; Fish et2l15):

/f X)dQ = Z/ I@mzlJe Er, X)W fC (21, x)dO (A2)

where the positions of the nonlocal quadrature points apeessed as;, the weights¥; and.J¢ is the Jacobian of
the coarse scale element. Table A.1 list the position of tmelocal quadrature points and their weights as a function
of the RVE expressed &' = ©/J¢ (Fish, 2014; Fish and Kuznetzov, 2010).

APPENDIX B. COARSE-SCALE DISPLACEMENT FIELD

The higher order beam theory presented by Heyliger and R@@88) and Reddy (1997) has 18 degrees of freedom
(dof’s), eight dof’s in each end node and two additional da@f’'the middle node that can be condensed out from the
solution; such that the displacements are expressed as:

C

U

e U ngef el el el Al Al Al A1 Al e 2 e 2 2 a2 a2 02 2 2 3 317
ug o =N {0”1 ouz ouz 91 03 O3 vz vz gui guy gquz 01 03 03 Y3 Y3 V3 Ys} (B.1)
C

u3

where“u; denotes the three-dimensional displacemejuisthe displacement at the centerline of the beam in direction
x1; and0; the rotation around the;; 0, = (9°u3)/(0x1) and0z = (0°u3)/(dz1). v2 andys are the cross-sectional
rotations around the, andxs, respectively.

The shape functions used to describe the displacementri&d.i(B.1) are:

TABLE A.1: Positions and Weights of Nonlocal Quadrature Points

. Positions of the nonlocal . a
Number of Gauss Points gauss points £ ;) Nonlocal weights ¥ 1)
2 A
2-Point rule — 44/ i Wio=1
f12 3 12
¢, _ 4 VB0 3507 - 5(4-07?)
= —an 1,3 =
3-Point rule L3 10 37 3(12—707)
£=0 Wo=2-—2W,
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r 1— /L 0 0 1"
6(L — x1) 2122 (L —21)°(L + 219) 0
L3 L3
6(L — z1) 2123 0 (L — 21)* (L + 211)
L3 L3
T L—x)x
0 (*1+ fl) x3 7( Ll) 2
(L—3$1) (L—$1) xr3 0 7(L_‘Tl) L1
1.2 L?
(L —3x1) (L —21) 22 (L - £C1)2 r1 0
- 12 T
2
(L—221)(L—21)as (1- ars
3h2 0 0
LZ
2
(L—221)(L—21)a2 (11— A
3 0 0
LZ
. 6$1 (—L + $1) T2 (3L — 2./11']_) x%
N¢ — i 7 0 (B.2)
6x1(—L + x1) a3 0 LM
.3 L3
0 213 T1%2
L L
21 (—2L 4 3x1) 23 0 (L —x) 21
1.2 L?
(2L — 3u1) 212 21 (=L +a) 0
1 %
2
(L — le) T1T3 1- %
3h? 0 0
_ B
2
(L — le) 1T 1- ﬂ
3b 0 0
_ B
2
4(L — xl)x1:E3 1- ﬁ
3h 0 0
LZ
2
4(L — :El)xlitz 1- ﬁ
36 0 0
LZ

The family of g(x) functions corresponding to the Heyliger and Reddy (1988)Reddy (1997) beam formula-
tion are obtained by substituting the known values in Eq) &4l solving for they(x) functions, which yields

g1=0 (B.3)
g2 = 2 (B.4)
g3 = T3 (B.5)

International Journal for Multiscale Computational Engiering



Multiscale Analysis of Prestressed Concrete Structures

g11=10
g12 = 1122
g13 = 1123
hy a3

922:—ﬁ+7

_ M5 af
98- "4% 2
_ _1‘ h2 —4 2
g122 = 8£C1( 2 ng)
_ 71‘ h2 _ 4 2
g133 = 81’1( 3 1’3)
9222 = 1 2 (h5 — 42%)
2472 \72 2

1
9333 = ~ 5,13 (h§ - 456%)

1

g1122 = EZ (h% - 450%) (|@|i - 121’%)
1

91133 = EZ (h% - 450%) (|@|i - 121’%)

1
Y1222 = 5,72 (*hg + 417%) x1

1
91333 = 5,73 (*hg + 417%) z1
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(B.6)
(B.7)
(B.8)

(B.9)
(B.10)
(B.11)
(B.12)
(B.13)
(B.14)
(B.15)
(B.16)
(B.17)

(B.18)



