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This paper proposes techniques for constructing linear parametric models describing key features of the distribution of
an output variable given input-output data. By contrast to standard models, which yield a single output value at each
value of the input, random predictors models (RPMs) yield a random variable. The strategies proposed yield models
in which the mean, the variance, and the range of the model’s parameters, thus, of the random process describing the
output, are rigorously prescribed. As such, these strategies encompass all RPMs conforming to the prescription of
these metrics (e.g., random variables and probability boxes describing the model’s parameters, and random processes
describing the output). Strategies for calculating optimal RPMs by solving a sequence of optimization programs are
developed. The RPMs are optimal in the sense that they yield the tightest output ranges containing all (or, depending
on the formulation, most) of the observations. Extensions that enable eliminating the effects of outliers in the data
set are developed.When the data-generating mechanism is stationary, the data are independent, and the optimization
program(s) used to calculate the RPM is convex (or, when its solution coincides with the solution to an auxiliary
convex program), the reliability of the prediction, which is the probability that a future observation would fall within
the predicted output range, is bounded rigorously using Scenario Optimization Theory. This framework does not require
making any assumptions on the underlying structure of the data-generating mechanism.

KEY WORDS: uncertainty quantification, representation of uncertainty, stochastic response surface
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1. INTRODUCTION

Metamodeling [1] refers to the process of creating a mathematical representation of a phenomenon based on input-
output data. These models can be parametric (e.g., polynomial response surfaces, polynomial chaos expansions, boot-
strapping techniques) or no-parametric (e.g., smoothing spline models, Kriging/Gaussian process models). In the para-
metric case, the analyst first prescribes the model’s structure and then determines the value of the model’s parameters
such that a measure of the discrepancy between observations and predictions is minimized. This step is commonly
referred to as model calibration or regression. Model-form uncertainty (i.e., uncertainty caused by the offset between
the structure of the computational model and the structure of the data-generating mechanism), measurement noise,
and numerical error often inhibit confidently prescribing a fixed constant value for such parameters. Consequently, it
is preferable to prescribe a set of parameter values such that the collective prediction that results from evaluating the
model at each set member accurately represents the ensemble of observations.

Several model calibration techniques are available in the literature. Most of them assume the structure

y = M(x, p) + η, (1)

wherey ∈ Rny is theoutput, M is a continuous function of its arguments,x ∈ Rnx is the input, p ∈ Rnp is a
parameteror regression coefficient, andη ∈ Rny is a random variation caused by noise and measurement error.
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Traditionally, the realizations of the random error are assumed to be independent and identically distributed (IID)
following a Normal distribution. A typical regression problem consists of estimating the value ofp given the set of
observations(xi, yi), for i = 1, . . . , N , whereN > np. A key assumption in this model structure is that measurement
error is the only cause of discrepancy between the observations and the noise-free prediction (so there is no model-
form uncertainty).

Parameter estimation is commonly carried out by solving for the parameter realization that minimizes the sum
of squared errors between predictions and observations [2]. This approach yields the least squares (LS) parameter
estimatêµ. The precision of this estimate, which prescribes how much it can deviate from its “true value” within an
epistemic framework (i.e., the true value ofp is fixed and unknown), is often evaluated using confidence intervals.
The calculation of confidence intervals [2] and prediction intervals requires a probabilistic description ofp. In linear
regression statistics, a prediction interval defines a range of values within which the output is likely to fall in given a
specified value of the input. Linearly regressed data are often non-normally distributed. Normally distributed data are
statistically independent of one another, whereas regressed data are dependent onx. The uncertainty represented by a
prediction interval includes not only the uncertainties associated with the population mean and the new observations,
but also with the uncertainty associated with the regression parameterµ̂. Because the uncertainties associated with
the population mean and new observation are independent of the observations used to fit the model, the uncertainty
estimates of these three sources are combined. In general, the calculation of confidence and prediction intervals often
requires (i) assuming a distribution forη, (ii) the predictedy having a mathematically convenient dependency onp
andη, or (iii) a nonlinearM being accurately represented by a linear approximation. As expected, the suitability of
the resulting predictions depend tightly on the validity of such assumptions.

A common approach to model calibration is Bayesian inference. In Bayesian inference, the objective is to describe
the model’s parameters as a vector of possibly dependent random variables using Bayes’ rule. The resulting vector,
called the posterior, depends on an assumed prior random vector and the likelihood function, which in turn depends
on the observations and on the structure ofM . Whereas this approach does not make any limiting assumptions on
the manner in whichM depends onp, nor on the structure of the resulting posterior, it requires that the calibrated
variables inp be epistemic. This vector might be comprised of physical epistemic uncertainties and hyperparameters
of aleatory variables.1 Note that the consideration of aleatory uncertainties requires assuming a structure for them
so they can be parameterized in terms of nonphysical epistemic variables. The presence of aleatory and model-form
uncertainty yields uncertainty characterizations that fail to describe the prediction error (i.e., the offset between the
observations and the prediction resulting from a calibrated model). This deficiency can be mitigated by adding a
fictitious discrepancy term toM [3]. This term, which can have a fixed epistemic or a fixed aleatory structure, is
calibrated as if it were part ofM . In spite of its high computational demands, and of the potentially high sensitivity of
the posterior to the assumed prior, this method is commonly regarded as a benchmark.

Bayesian calibration is often applied to modelsM having a physics-based structure. In contrast, this paper yields
data-based models having a linear parameter dependency. This structure enables a rigorous treatment. Extensions to
models having an arbitrary structure, including physics-based models whose parameters are real numbers, are made
in [4]. In this paper, we do not use a measurement error term such asη, nor do we make prior assumptions about a
distribution ofp. What is here called a random predictor model (RPM) has the general formy = M(x, p), wherep is
a random vector, so the outputy is a random process parameterized byx. We do not fully specify the distribution of
p. Instead, we only seek to find an expected value, a covariance matrix, and, in some cases, a support set forp.

Making the prediction match the observations by adjusting the hyperparameters of a distribution ofp is a long-
standing approach used in reliability-based design optimization, moment matching algorithms, and backward prop-
agation of variance [5–8]. In this paper, these hyperparameters are determined by solving optimization programs
according to the input-output data available and a few design parameters chosen by the analyst. The role of these
parameters is to limit the largest number of standard deviations that can separate the measured outputs from the mean
function. The resulting description ofp is chosen to be as tight as possible while satisfying this restriction. We further

1For instance, ifq contains the physical parameters of the modelM , whereq1 is epistemic andq2 is aleatory, having a normal
distribution with meanµ and standard deviationσ, the vectorp = [q1, µ, σ]> contains three epistemic variables, one physical
and two nonphysical.
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provide means of identifying outliers in the data set so that eliminating them from the modeling process can result
in predictions having a narrower output range at the expense of a reduction in the reliability of the prediction. Such
a reduction can be formally quantified using the scenario approach (see Section 5). This article extends the interval
predictor models (IPMs) proposed in [9], for whichp is prescribed as a bounded set, sop is prescribed as a random
vector. The developments herein enable generating random descriptions ofp, and thus ofy, having an arbitrary struc-
ture. This structure can be a random vector (e.g.,p can be Gaussian or a generalized beta), or a probability box (e.g.,
all random vectors having a fixed expected value, variance, and support set). As such, the resulting characterization of
p is distribution free.

As in the Bayesian inference approach, the formulations proposed yield a probabilistic description of the model’s
parameters. In contrast to the Bayesian approach, however, the proposed methods do not require any prior description
of the uncertainty inp, and the resulting models yield analytical characterizations for both the predicted output and the
model’s parameters. This paper focuses on computational models having a linear dependency onp and an arbitrary
dependency onx. Furthermore, the support of the probability density function characterizingp will be prescribed as a
hyper-rectangular set. The advantage of these sets is that each component ofp can be selected arbitrarily in its interval
independently of the choices made for any of the other parameters. As such, parameter interdependencies are avoided.
This independence enables the calculation of RPMs whose parameters are independent random variables.

This paper is organized as follows. Section 2 describes the problem statement and main objectives of this article.
Section 3 presents the mathematical framework for calculating IPMs. These models play an instrumental role in the
calculation of some RPMs. Section 4 presents formulations for calculating RPMs having various levels of fidelity and
insensitivity to outliers. The reliability of the these models is studied in Section 5. Finally, Section 6 presents a few
concluding remarks.

2. PROBLEM STATEMENT

A data generating mechanism (DGM) is postulated to act on a vector of input variables,x ∈ Rnx , to produce an
output,y ∈ Rny . In the following, the focus will be on the single-output (ny = 1), multi-input (nx ≥ 1) case. The
dependency of the output on the input is entirely arbitrary. This covers the case in whichy is a function ofx (so there
is one output value for each input value) and the case in whichy is a random process parameterized byx (so there are
infinitely many output values for each input value). Assume thatN input-output pairs are obtained from a DGM, and
denote byz = {zi}, with zi = (xi, yi) for i = 1, . . . , N , the corresponding data sequence.

It is desired to build a mathematical model of the DGM based onz that will predict the output corresponding to
an unobserved realization of the input. LetX ⊆ Rnx a set of input variables, andY ⊆ Rny be a set of outputs which
might result from evaluating the model at elements ofX. The presence of intrinsic variability, and parametric- and
model-form uncertainty makes it unrealistic to build a model that will predict a single output for a fixed input. Instead,
an IPM will predict an interval-valued function into which the output from an unobserved input is expected to fall,
while an RPM will predict a random process matching key features of the data. Engineering judgment is used to select
a computational modely = M(x, p), wherep ∈ Rnp is a parameter vector. Instead of the standard practice of trying
to match all the data as closely as possible withM evaluated at a single vectorp of parameters, the thrust in this work
is to restrict as much as possible a set inRnp from whichp is chosen while, at the same time, having the property that
each data point inz (except, possibly, for a few outliers neglected purposely by the analyst) can be fit exactly by the
model evaluated at least one element ofp in such a set.

One restriction to be considered is forp to belong to a setP . For a fixed value of the inputx, the propagation ofP
throughM yields an interval of output values. Thus these models are called interval predictor models. The objective
here is to chooseP to make the correspondingy intervals as small as possible and still allow each data point(xi, yi)
to be modeled asyi = M(xi, p) for somep ∈ P . The other form of restriction considered is to describep as a random
vector. For a fixed value of the inputx, the propagation of this vector throughM yields a random variable for the the
outcomey. Various properties ofRy(x), such as its moments and support set, are determined by those ofp. The thrust
here is to choose a random vector that leads to a prediction matching key features of the data.

In this setting the two main problems of interest can be stated as follows. First, we want to find an empirical model
that, when evaluated at a new valuexN+1 of the input, returns an informative prediction of the unobserved output
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yN+1. An informative prediction can be interpreted as a narrow interval that is consistent with salient features of
the data comprisingz. These features, which are prescribed by the analyst as design requirements (for example, we
might want all observed outcomes to be less than 2 standard deviations from the mean function), are cast as inequality
constraints in the optimization programs used to create the model. Second, we want to quantify the probability of
yN+1 being compliant with such requirements. (In the previous example, we want to evaluate the probability that
yN+1 is less than 2 standard deviations away from the mean function.) In this setting, the targeted prediction is a
narrow output interval of high probability. Note that the second objective implies that the prediction must conform to
the DGM foranyvalue ofN without having any knowledge about its underlying structure.2

3. INTERVAL PREDICTOR MODELS

This section introduces basic concepts from IPMs that are essential for the construction of RPMs. Additional infor-
mation on IPMs and examples are available in [9]. An IPM is simply a mapping that assigns an output interval for
each value of the input. In the context of this paper, an IPM assigns to each instance vectorx ∈ X a corresponding
outcome interval inY . That is, an IPM is a set-valued map,

Iy : x → Iy(x) ⊆ Y, (2)

whereIy(x) is the prediction interval. Depending on context, the term IPM will refer to either the functionIy or its
graph{(x, y) : x ∈ X, y ∈ Iy(x)} in X × Y . Let M be any functional acting on a vectorx of inputs and a vectorp
of parameters to produce an outputy; i.e.,y = M(x, p). A parametric IPM is obtained by associating to eachx ∈ X
the set of outputsy corresponding to all values ofp in P :

Iy(x, P ) = {y = M(x, p), p ∈ P}. (3)

Iy(x, P ) will be an interval as long asM(x, p) is a continuous function ofx andp, andP is a connected set. All
instances ofM andP considered in this paper satisfy these restrictions. Attention will be limited to the IPM given by

Iy(x, P ) = {y = p>ϕ(x), p ∈ P}, (4)

whereϕ(x) is an arbitrary basis, andp is a member of the hyper-rectangular uncertainty set

P = {p : p ≤ p ≤ p}. (5)

The parameter pointsp andp are called the defining vertices ofP . This model structure enables describing the IPM
as

Iy(x, P ) =
[
y(x, p, p), y(x, p, p)

]
, (6)

where

y(x, p, p) = p>
(

ϕ(x)− |ϕ(x)|
2

)
+ p>

(
ϕ(x) + |ϕ(x)|

2

)
, (7)

y(x, p, p) = p>
(

ϕ(x) + |ϕ(x)|
2

)
+ p>

(
ϕ(x)− |ϕ(x)|

2

)
. (8)

The functionsy andy are, respectively, the lower and upper boundaries of the IPM. Each member of the family of
infinitely many functions that result from evaluating the modelM at each realizationp ∈ P lies between them, and
no tighter containing functions exist. Observe that the IPM boundaries are not members of such a family whenϕ(x)
changes sign. The IPM boundaries are linear functions ofp andp, and piecewise continuous functions of the input. As
such, they will have derivative discontinuities on the hypersurfaces whereϕ(x) changes sign. The spread ofIy(x, P ),
which is the distance between the upper and lower boundaries, is

δy(x, p, p) = (p− p)>|ϕ(x)|. (9)

2We will only assume that the DGM is stationary and the observations inz are IID.

International Journal for Uncertainty Quantification



Random Predictor Models for Rigorous Uncertainty Quantification 473

The narrower the spreadδy the more informative the IPM prediction. Note that the spread depends on the size of the
uncertainty boxP but is independent of its geometric center. Furthermore, notice that a reduction in the volume ofP
might yield a larger spread.

The particular case in which the basis is polynomial is considered next. A general representation of a multivariate
polynomial basis is

ϕ(x) =
[
1, xi2 , xi3 , . . . , xinp

]>
, (10)

wherex = [x1, . . . , xnx ] is the input, and the vectorij = [ij,1, . . . , ij,nx ], with ij 6= ik for j 6= k having the exponents
of the monomials. For a polynomial basis we haveϕ(|x|) = |ϕ(x)|, which further simplifies Eqs. (7)–(9).

The above equations fully specify an IPM given the uncertainty boxP . A means to calculateP ’s leading to optimal
IPMs is provided next.

3.1 Type-1 IPMs

In this formulation we seek an IPM given by Eqs. (4)–(9), whereP = P̂ is given by the solution to the following
optimization program (OP):

Optimization Program 1 (OP1). The defining vertices of̂P are given by
{
p̂, p̂

}
= argmin

u, v

{
Ex[δy(x, v, u)] : y(xi, v, u) ≤ yi ≤ y(xi, v, u), u ≤ v

}
, (11)

whereEx[·] is the expected value operator with respect to the inputx, and(xi, yi) for i = 1, . . . , N are the observa-
tions comprisingz.

In this formulation we search for the uncertainty boxP that minimizes the expected interval spread such that all
the observed outputs are within the IPM. Whenx is a standard joint random vector, the cost function in (11) can be
calculated analytically. Otherwise, the sample mean ofδy based on the data inz should be used. The resulting IPM,
which is calculated by solving the convex OP in (11), admits a rigorous reliability assessment (see Section 5). This
assessment formally bounds the probability that a future observation will fall withinIy(x, P̂ ).

The DGM is commonly approximated by the LS prediction,y = µ̂>ϕ(x), where the LS parameter estimateµ̂ is
given by

µ̂ = (A>A)−1A>[y1, . . . , yN ]>, (12)

and Ai,j = ϕj(xi), for i = 1, . . . , N and j = 1, . . . , np. The vectorµ is the parameter value minimizing∑N
i=1

[
yi − p>ϕ(xi)

]2
. The membership of̂µ in P̂ can be ensured by replacing the first constraint withu ≤ µ̂ ≤ v

(i.e., µ̂ ∈ P̂ ), or adding the constraintu + v = 2µ̂ (i.e., µ̂ is the geometric center of̂P ). In general, the inclusion of
these constraints leads to IPMs with larger expected spreads, with the equality constraint leading to the larger of the
two. A formulation resulting from adding either of these two sets of constraints will be called Augmented OP1. Other
types of IPMs are considered in [9].

4. RANDOM PREDICTOR MODELS

A RPM is a mapping that assigns to each input vectorx ∈ X a corresponding random variable in the output spaceY .
That is, a RPM is a random variable-valued map

Ry : x → Ry(x) ⊆ Y, (13)

whereRy(x) is a random process having its support inY . A parametric RPM is obtained by associating to eachx ∈ X
the set of outputsy corresponding to all values ofp described by a random vector with joint cumulative distribution
function (CDF)Fp(p) havingP in (5) as its support set. As before, attention will be limited to the case where the
output is linear inp. This leads to

Ry (x, Fp) = {y = p>ϕ(x), p ∼ Fp(p)}. (14)
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Denote byµ ∈ Rnp , ν ∈ Rnp , andc ∈ Rnp(np−1)/2 the mean, variance, and correlation ofp, respectively. The
variance and correlation fully prescribe the covariance matrixC(ν, c) ∈ Rnp×np . It can be shown that anyFp(p)
supported inP must satisfy the consistency equations:

p ≤ µ ≤ p, (15)

0 ≤ ν ≤ (µ− p)¯ (p− µ), (16)

−1 ≤ c ≤ 1, (17)

C(ν, c) º 0, (18)

where the symbols̄ andº denote the componentwise product of vectors and positive semidefiniteness, respectively.3

The random processRy(x, Fp) is fully prescribed by the modely = p>ϕ(x) andFp(p). Naturally, key features
of the prediction, such as statistical moments and its range, vary withx. In particular, the mean function isµy(x, µ) =
Ep[y(x, p)] = µ>ϕ(x), the variance function is

νy(x, ν, c) = Ep{[y(x, p)− µy(x)]2} = ϕ(x)>C(ν, c)ϕ(x), (19)

and the interval-valued range or support function is given by (6). When the components ofp are uncorrelated, Eq. (19)
reduces to4

νy(x, ν) = ν>ϕ2(x). (20)

A few metrics for characterizingRy(x) are introduced next. Theσ surface, which connects all the outputsy that
areτ standard deviations from the mean function, is defined as

sσ(x, µ, τ, ν, c) = µ>ϕ(x) + τ

√
νy(x, ν, c), (21)

whereτ > 0 corresponds to deviations above the mean andτ < 0 to deviations below. Theσ volume, defined as

vσ(x, µ, τ, ν, c) = [sσ(x, µ,−τ, ν, c), sσ(x,µ, τ, ν, c)] , (22)

is an interval-valued function that contains all the outputsy that are no more thanτ standard deviations away from the
mean functionµy(x). For the value ofτ to be feasible; i.e., for theσ surface to be within the support ofRy(x, Fp), it
must satisfy

y(x, p, p) ≤ sσ(x, µ, τ,ν, c) ≤ y(x, p, p). (23)

Equation (23) ensures that the support of the process contains outcomes that are up toτ standard deviations from the
mean function. Note that the range ofτ values (i.e., range of standard deviations) satisfying these inequalities is a
function ofx.

The formulations that follow prescribe key features ofFp, thus of the random processRy(x, Fp), based on input-
output data. As such they encompass all RPMs conforming to such features. Four types of RPMs are proposed. Type-1
RPMs prescribe the mean and variance ofRy(x) when the entire data set is used. Type-2 RPMs prescribe the same
statistics after eliminating the effects of a fixed percentage of the observations (i.e., outliers). Such observations are
worst case in the sense that their removal tightens theσ volume the most. Type-3 and type-4 RPMs not only prescribe
the mean and variance, but also the supportP . Whereas type-3 RPMs emphasize the tightness of the range ofy, type-4
RPMs emphasize the tightness of theσ volume. In contrast to type-1 and type-2 RPMs, which only require solving
two OPs (one forµ and another one forν), type-3 and type-4 RPMs require solving a sequence of three interdependent
OPs (one for eachµ, ν, andP ). A summary of the main features of all four RPMs is provided in Table 1.

The presentation that follows focuses on the uncorrelated case. This case renders convex OPs that enable having a
large number of observations. Extensions to the correlated case can easily be made. In the developments that follow,
the performance of an RPM refers to the property evaluated by the cost function in the corresponding OP.

3The upper bound in (16) results from applying the expected value operatorEpi [·] to both sides ofp2
i ≤ (p

i
+ pi)pi − p

i
pi,

which holds for allpi ∈ [p
i
, pi], and then usingνi = Epi [p

2
i ]− µ2

i for i = 1, . . . , np.
4When the correlationc is zero, the corresponding argument of any function depending on it will be dropped from the notation.
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TABLE 1: Performance functionJ , number of constraintsc, and decision variable
s for all RPM types

First OP Second OP Third OP

J =
∑

[yi − p>ϕ(xi)]2 J = Ex[νy(x)]
Type-1 RPM c = 0 c = 2N + np N/A

s = µ s = ν

J =
∑

[yi − p>ϕ(xi)]2 J = Ex[νy(x)]
Type-2 RPM c = 0 c = np + 1 N/A

s = µ s = ν

J =
∑

[yi − p>ϕ(xi)]2 J = Ex[δy(x)] J = Ex[νy(x)]
Type-3 RPM c = 0 c = 2(N + np) c = 1 + 2np

s = µ s = {p, p} s = ν

J =
∑

[yi − p>ϕ(xi)]2 J = Ex[νy(x)] J = Ex[δy(x)]
Type-4 RPM c = 0 c = np + 1 c = 2N + 3np

s = µ s = ν s = {p, p}

4.1 Type-1 RPMs

Type-1 RPMs prescribe the expected value and variance functions ofRy(x, Fp) based on the entire data set inz. A
type-1 RPM is given by Eq. (14), whereFp has a expected value5 µ = µ̂ given by (12) and a varianceν = ν̂ given by
the following OP:

Optimization Program 2 (OP2). For a given the meanµ, the varianceν is equal to

ν̂ = argmin
ν

{Ex[νy(x, ν)] : sσ(xi, µ,−τmax,ν) ≤ yi ≤ sσ(xi, µ, τmax, ν) for i = 1, . . . , N, ν ≥ 0} , (24)

whereτmax > 0 is a parameter prescribed by the analyst, and(xi, yi) for i = 1, . . . , N are the observations inz.

Hence, a Type 1-RPM minimizes the expected value of the output’s variance such that all observations are no
more thanτmax standard deviations away from the mean function; i.e., all observations are within theσ-volume
vσ(x, µ, τmax, ν̂), such that the sum of the squares of the prediction errors relative to the mean function is minimal.

The dependence of̂ν onτmax is studied next. Equation (24), which is subject to2N + np inequality constraints,
is equivalent to the linear program

ν̂ = argmin
ν

{
ν>Ex

[
ϕ2(x)

]
: τ2

maxν
>ϕ2(xi) ≥

[
yi − µ>ϕ(xi)

]2
for i = 1, . . . , N, ν ≥ 0

}
, (25)

which is subject toN + np constraints. The constraint set in (25) scales inversely withτ2
max, so the scaled optimal

objective value
I = τ2

maxν̂
>Ex[ϕ2(x)] (26)

is invariant with respect toτmax. It follows that the largerτmax, the smaller‖ν̂‖, and the larger the number of standard
deviations separating any given point(x, y) from the mean function. If̂ν1 is the solution to (25) corresponding to
τmax,1, andν̂2 = αν̂1 whereα = (τmax,1/τmax,2)2, thenν̂2 is the solution to (25) corresponding toτmax,2. This
implies thatvσ(x, µ, τmax,1, ν̂1) = vσ(x, µ, τmax,2, ν̂2), andvσ(x, µ, τmax, ν̂) is independent of the choice ofτmax.

A type-1 RPM does not prescribe the support ofp, and thus ofRy(x, P ). Any random vector satisfying the
consistency equations (15)–(18) forµ = µ̂ andν = ν̂ is a valid characterization ofFp(p). Note that both type-1

5The selection ofµ asµ̂ is arbitrary, and any other value can be used instead. This applies to all OPs derived hereafter.
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IPMs and type-1 RPMs require solving a convex OP. As such, they can efficiently handle hundreds of thousands of
data points, thus many more input dimensions than alternative metamodels. Since type-1 RPMs are calculated by
solving a convex OP, they admit a rigorous reliability assessment. This assessment, presented in Section 5, bounds the
probability that a future observation will fall outsidevσ(x, µ, τmax, ν̂).

Example 1. Consider the DGMy = x2 cos(x)− sin(3x)e−x2−cos(x2)+x(g−1), wherex is uniformly distributed
overX = [−5.5, 5.5], andg is a standard normal distribution.6 A total of N = 150 independent observations from the
DGM were used to form the data sequencez. We assume thatM is a linear combination of sixth-order polynomials so
ϕ(x) = [1, x, x2, x3, x4, x5, x6]>, andnp = 7. In [9] we calculate several IPMs based on the same setup, for which
the LS parameter estimate isµ̂ = [−0.8734,−1.1059,−0.9926, 0.0026, −0.0228,−0.0004, 0.0028]>.

A type-1 RPM forτmax = 1, to be referred to as RPM A, is shown in Fig. 1. This figure shows the observations
(×’s), the mean functionµy(x) (solid line), as well asσ surfaces (green dashed-dotted lines) in increments of0.5
standard deviations. Note that the observation near(1,−15) limits the σ volume from below. The only significant
variance7 in ν̂ is ν̂1, so the performance of RPM A isEx[νy] = ν̂1 = 180.3824.

4.1.1 Outliers

The presence of a few low-probability data points deviating considerably from the rest of the observations will
make theσ volume and uncertainty setP much larger, diminishing the RPM’s performance. Whereas the limits
of vσ(x, µ, τmax, ν̂) might be driven by a few observations, the majority of them might be much closer to the mean
function, e.g., for RPM A above, only nine observations are outsidevσ(x, µ, 0.5, ν̂), whereas the remaining 141 ob-
servations are inside. The removal of such points from the data set will lead to narrower, more informative predictions
at the expense of a reduced RPM’s reliability. These observations, to be calledoutliers hereafter, can be identified
using any one of several figures of merit. This paper will use
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FIG. 1: RPM A: type-1 RPM forτmax = 1.

6Note that no knowledge about DGM is required to calculate RPMs. This equation has been included solely for clarity in the
presentation.
7For a given RPM, we might want to evaluate the contribution of individual terms inM to the resulting prediction. The termϕi(x)
is insignificant when its contribution to the mean function, given bymaxx∈X{|µiϕi(x)|}, and its contribution to the variance,
given bymaxx∈X{νiϕ

2
i (x)}, are sufficiently small. Terms satisfying both of these conditions, along with the conditions affecting

Iy(x, P̂ ), as explained in [9], can be removed fromM without degrading the prediction.
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κi(µ, ν, c) =

(
yi − µ>ϕ(xi)

)2

νy(xi,ν)
. (27)

The metricκi is a variance-normalized distance squared between theith observed output and the mean function at the
corresponding input. Outliers will be identified by determining the data points corresponding to the largest percentiles
of the empirical CDF ofκ, Fκ(ν̂)(κ), based on theN observations, i.e.,(xi, yi) is an outlier ifFκ(ν̂)(κi) > λ where
0 ¿ λ < 1. Once the outliers are identified, they can be removed from the data sequence and a new type-1 RPM
will be calculated. The resulting RPM will attain tighter predictions for aλ fraction of the observations inz, while the
prediction for the remaining1− λ fraction might be considerably degraded. The outliers found by this procedure will
be the same regardless of the value8 of τmax.

Example 2. We now derive a type-1 RPM forτmax = 1 after removing seven outliers from the data set. These
outliers attain the largest values ofκ. The resulting RPM, to be referred to as RPM B, is shown in Fig. 2. In this case
there are seven observations outsidevσ(x, µ̂, 1, ν̂) by design (shown with circled cross symbols), and 114 within the
vσ(x, µ̂, 0.5, ν̂). The only sizable variances for RPM B areν̂1 = 44.5139 and ν̂2 = 0.5194. The performance of
RPM B,Ex[νy] = 49.2469, is 72.7% better than that of RPM A. The approach to eliminate the effects of outliers
used above requires the identification and removal of observations from the data set and the calculation of two RPMs.
Conversely, the approach described next achieves the same objective without identifying or removing outliers and
requires calculating only a single RPM.

4.2 Type-2 RPMs

A formulation leading to an alternative RPM is presented next. In contrast to type-I RPMs, this approach searches for
ν by using only a fixed percentage of theN observations available. The observations comprising the neglected set are
worst case in the sense that their removal tightens the optimalσ volume the most. Whereas the outliers removed to
construct RPM B are worst case for the value ofν̂ corresponding to RPM A only, those neglected in a type-2 RPM
are worst case for the varying value ofν being considered during the optimization. This will be carried out without
removing any point from the data sequence in advance.
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FIG. 2: RPM B: type-1 RPM after the removal of outliers.

8This is a consequence of the following observation. If[κi, Fκ(κi)] are points on the optimal CDFs corresponding toτmax,1, the
points on the optimal CDF corresponding toτmax,2 are[ακi, Fκ(κi)], whereα was defined earlier.
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In particular, a type-2 RPM is given by Eq. (14), wherep has an expected valueµ = µ̂ given by (12) and a variance
ν = ν̂ given by the following OP:

Optimization Program 3 (OP3). For a given the meanµ, the varianceν is equal to

ν̂ = argmin
ν

{
Ex[νy(x, ν)] : Fκ(ν)

(
τ2
max

) ≥ λ, ν ≥ 0
}

, (28)

whereτmax > 0 is a parameter prescribed by the analyst,Fκ(ν) is the empirical CDF ofκ(ν) in (27) based on theN
observations inz, and0 < λ ≤ 1, another parameter to be chosen by the analyst, is the proportion of observations to
be contained byvσ(x,µ, τmax, ν̂(λ)).

Hence, a Type-2 RPM minimizes the expected value of the output’s variance such that aλ fraction of the obser-
vations are no more thanτmax standard deviations apart from the mean function, such that the sum of the squares
of the prediction errors relative to the mean function is minimal. The tightening of the prediction for such a fraction
yields aσ volumevσ(x, µ, τmax, ν̂(λ)) that does not enclose the remaining1 − λ fraction. This shows that (28) is a
chance-constraint formulation [10], in which one is willing to accept the occurrence of unfavorable low-probability
events (probability1−λ) for the sake of an improved performance for high-probability events (probabilityλ). As with
type-1 RPMs,τmax is essentially a scaling factor.

OP3 is a nonconvex formulation. Whenλ = 1 the solution to OP3 and the solution to OP2, which is convex,
are the same.9 Whenλ < 1, a fixed number of observations (outliers) are neglected as the RPM is being calculated.
Outliers can be easily identified by finding the data points for whichFκ(ν̂) (κi(ν̂)) > λ. The points violating this
condition, which are the elements ofz within vσ(x, µ, τmax, ν̂(λ)), constitute the sequencew. A type-1 RPM based
on the data sequencew is equivalent to the type-2 RPM in (28) based on the data sequencez. This relationship enables
performing a reliability assessment of type-2 RPMs. This assessment, presented in Section 5, formally bounds the
probability that a future observation will fall outsidevσ(x, µ, τmax, ν̂(λ)).

Example 3. We now derive a type-2 RPM forλ = 143/150 andτmax = 1. As with RPM B, we want 143 observations
to be less than one standard deviation away from the mean function. The resulting RPM, shown in Fig. 3, will be
referred to as RPM C. Note that the process is more focused on the LS prediction than either RPM A or RPM
B. The only sizable components ofν̂ are ν̂1 = 6.0124, and ν̂2 = 3.2985. Note that the outliers, falling outside
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FIG. 3: RPM C: type-2 RPM forλ = 143/150 andτmax = 1.
9Note that ifEx[·] is calculated based on a sample mean, allN data points inz must be used to obtain equal solutions.
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vσ[x, µ̂, 1, ν̂(λ)], differ from those of RPM B. The performance of RPM C,Ex[νy] = 36.3341, is 26% better than
that of RPM B.

Figure 4 shows the empirical CDFs ofω = κ(ν̂)Ex[νy(x, ν̂)] for RPM A and RPM C. Note that the smaller the
value ofω, the more concentrated the data about the mean function. The support ofω for RPM A is[0, 180.4], whereas
that for RPM B is[0, 718.1]. The upper limits of these intervals are shown as dotted lines. Hence, the concentration of
the set ofN = 150 data points about the mean is about four times higher for RPM A than that for RPM B. However,
if we look at the quantileω = F−1

ω (143/150), we note that the closest143 data points to the mean for RPM B
are more concentrated than those for RPM A. The range ofω corresponding to such points for RPM A is[0, 48.32]
whereas that for RPM B is[0, 37.76]. The upper limits of these intervals are shown as dashed lines. Therefore, when
only 143 data points out of the 150 are considered, RPM B is about30% better than RPM A. This illustrates that (28)
is a chance-constraint formulation in which one is willing to accept a degraded performance (i.e., larger values ofω)
for low-probability events (i.e., those occurring with probability1− λ) for the sake of an improved performance (i.e.,
smaller values ofω) for high-probability events (i.e., those occurring with probabilityλ).

4.3 Type-3 RPMs

Type-3 RPMs prescribe the expected value, variance, and support ofp, and thus ofRy(x). In contrast to type-1 and
type-2 RPMs, which require solving one OP for the mean and another one for the variance, a type-3-RPM requires
solving a sequence of three OPs linked by the consistency equations (15)–(18). The additional OP is used to calculate
the supportP . The order of the sequence implies that the mean has priority over the support set, and the support set
over the variance.

In particular, a type-3 RPM is defined by Eq. (14), whereµ = µ̂ is given by (12),P = P̂ is given by an augmented
version of (11), and the varianceν = ν̂ is the solution to the following OP:

Optimization Program 4 (OP4). For a given meanµ and a given uncertainty setP with defining verticesp andp,
the varianceν is equal to

ν̂ = argmin
ν

{
Ex[νy(x, ν)] : Fκ(ν)

(
τ2
max

) ≥ λ, 0 ≤ ν ≤ νmax

}
, (29)
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FIG. 4: Empirical CDFs ofω = Ex[νy]κ(ν̂) for RPM A (red) and RPM C (blue).
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whereνmax = (µ− p)¯ (p− µ) andFκ(ν) is the empirical CDF ofκ(ν) in (27) based on theN observations inz.
The parametersτmax andλ, to be chosen by the analyst and defined earlier, must satisfy

τmax > τ∗max = max
1≤i≤N

{
|yi − µ>ϕ(xi)|√

νy(xi, νmax)

}
, (30)

and0 < λ ≤ 1.

Hence a type-3 RPM minimizes the expected value of the output’s variance such thatvσ(x, µ, τmax, ν̂(λ)) con-
tains10 bλNc observations, subject to (i) aP that minimizes the expected spread for a rangeIy(x, P ) containing the
full set of N observations, and (ii) aµ that minimizes the sum of the squares of the prediction errors relative to the
mean function. Note that extreme observations from a set ofN elements prescribe the support setP̂ in OP1 according
to δy, whereas extreme observations from a set ofbNλc elements prescribêν in OP4 according toκ. The solution to
(11) enters (29) via the upper bound onν, νmax. The constraint (30) ensures the feasible design space is nonempty.
The ith component of the vector at the right-hand side of (30) is the absolute value ofτi, whereτi is the solution to
yi = sσ(xi, µ, τi, νmax). Henceτi is the smallest number of standard deviations that can separate(xi, yi) from the
mean function without lettingν exceedνmax.

Whereas the augmented OP1 is convex, the inequality constraints in (29) make OP4 nonconvex. Whenλ = 1, such
constraints are equivalent to the constraints in (25), so the solution to OP4 coincides with the solution to a convex
OP. Therefore type-3 RPMs for the case in whichλ = 1 can be found by solving a sequence of three convex OPs.
Whenλ < 1, the constraints in (29) are equivalent to a subset of the constraints in (25). This subset is given by all the
elements inz satisfyingFκ(ν̂)(κi) ≤ λ. ThebNλc observations satisfying this condition constitute the data sequence
w. Therefore OP4, based on the data sequencez, renders the same empirical model as a convex OP based on the data
sequencew. This is the basis used for bounding the reliability of type-3 RPMs. To this end (see Theorem 2), it is
useful to determine if the containment conditionvσ(x, µ, τmax, ν) ⊆ Iy(x, P ) holds for allx ∈ X, i.e., the range of
Ry(x, P ) contains theσ volume corresponding toτmax. This condition holds if and only if

(p− p)>|ϕ(x)| −
∣∣(p + p− 2µ)>ϕ(x)

∣∣− 2τmax

√
ϕ(x)>C(ν, c)ϕ(x) ≥ 0, (31)

∀x ∈ X. Type-3 RPMs satisfying this semi-infinite constraint allow for a tighter reliability bound. Enforcing the
containment condition by design requires incorporating (31) into (29).

Example 4. Two type-3 RPMs based on the same setup used earlier are derived next. Whereas the two RPMs
differ in the value ofλ used to calculatêν, both use the same support setP̂ . This set is calculated via an aug-
mented OP1 sôµ ∈ P̂ . This leads tôp = [−12.9837,−1.1488,−0.8339, 0.0013,−0.0379, −0.0001, 0.0032]>, and
p̂ = [7.2080,−1.1488,−0.8339, 0.0013,−0.0379,−0.0001, 0.0034]>, andEx[δy] = 10.4942. These values, in turn,
yield an upper bound forν where the only significant component isνmax,1 = 90.8037. The bound onτmax resulting
from (30) yieldsτ∗max = 1.4094. Thus we selectedτmax = 1.5.

A type-3 RPM forλ = 1 is calculated first. Therefore we require that all 150 observations be no more than 1.5
standard deviations from the mean function. The resulting RPM, to be referred to as RPM D and shown in Fig. 5, leads
to a variancêν for which the only significant term iŝν1 = 80.1699. The performance of RPM D is given by both
Ex[δy] = 10.4942 andEx[νy] ≈ ν̂1. Whereas the boundaries ofIy(x, P̂ ) are shown as dashed black lines,σ surfaces
separated by0.5 units are shown as dashed-dotted green lines. Note that the augmented constraint yielded a mean
function that deviates considerably from the center ofIy(x, P̂ ). Furthernore, notice that the lower limit of the support
coincides with theσ surfacesσ(x, µ̂,−1.5, ν̂) even though the functions have different functional forms. Conversely,
the values ofτ on (21) for which the correspondingσ surface coincide withy(x, p̂, p̂) vary. Even though the portions

of the σ-surfacessσ(x, µ̂, τ, ν̂) spreading outsideIy(x, P̂ ) are infeasible, e.g., almost the entiresσ(x, µ̂,−1.5, ν̂),
they are plotted for clarity. The feasible range ofτ values at each value ofx is given by (23). Because the majority of
the observations are at the center ofIy(x, P̂ ), neglecting a few outliers will considerably tighten the prediction.

10The floor operatorb·c is the greatest integer less or equal than or eqval to its argument.
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FIG. 5: RPM D: type-3 RPM forτmax = 1.5 andλ = 1.

A type-3 RPM forλ = 143/150 is derived next. Therefore we require that 143 observations be no more than 1.5
standard deviations from the mean function. This model, to be referred to as RPM E, leads to a varianceν̂ for which
ν̂1 = 22.2497 is the only significant term. The performance of RPM E is given byEx[δy] = 10.4942 as before, and
by Ex[νy] ≈ ν̂1. In terms of the latter metric, RPM E is 3.6 times better than RPM D. Figure 6 showsσ surfaces
corresponding to RPM E being 0.5 units apart. The same line conventions used before apply. A comparison between
Figs. 5 and 6 indicates that RPM E yields a tighter probabilistic description for100λ% of the observations than RPM
D. The containment condition in (31) is not satisfied by either RPM D or RPM E. This is reflected in Figs. 5 and 6,
wheresσ(x, µ̂, 1.5, ν̂) > y(x, p̂, p̂) for somex in X.

The sequential construction of a type-3 RPM, where the varianceν is solved for after solving for the support setP ,
restricts its probabilistic performance (i.e., the variance is calculated given an optimalP ). This restriction manifests

−5 −4 −3 −2 −1 0 1 2 3 4 5
−30

−20

−10

0

10

20

30

x

y

 

 

LS prediction

Data points

σ − surfaces

Support

FIG. 6: RPM E: type-3 RPM forτmax = 1.5 andλ = 143/150.
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in the lower bound (30) to admissible values ofτmax. A sequential approach reversing the order and priorities of the
model is presented next.

4.4 Type-4 RPMs

As with a type-3 RPM, a type-4 RPM prescribes the expected value, variance, and support set ofFp, and thus of
Ry(x), by solving three OPs. The first two OPs yield a type-2 RPM whereas the latter yieldsP . In contrast to type-3
RPMs, type-4 RPMs make the tightness of theσ volume more important than the spread of the output’s range.

In particular, a type-4 RPM is given by Eq. (14), where the expected valueµ = µ̂ is given by (12), the variance
ν = ν̂ is given by (28), andP = P̂ is given by the following OP:

Optimization Program 5 (OP5). For a given meanµ and a given varianceν, the defining vertices of̂P are given by

{
p̂, p̂

}
= argmin

u, v

{
Ex[δy(x, v, u)] : u ≤ µ ≤ v, y(xi) ≤ yi ≤ y(xi), i = 1, . . . , N, ν≤(µ− u)¯ (v − µ)

}
. (32)

Hence a type-4 RPM prescribes aP that minimizes the expected spread of the random processRy(x, Fp) such
that the support setIy(x, P ) contains allN observations subject to (i) aν that minimizes the expected output variance
for aσ volumevσ(x, µ, τmax, ν̂(λ)) containingbλNc observations, and (ii) aµ that minimizes the sum of the squares
of the prediction errors relative to the mean function. Note that the solution to OP3 enters OP5 via the lower bound
of the last constraint. Further notice that is further notice that OP3, used to calculateν̂, is nonconvex, whereas OP5,
used to calculatêP , is convex. This is the case even though the feasible design space associated with the bilinear
constraints in (32) is nonconvex. The equivalence between OP3 and OP2, covered in Section 4.2, allows performing
a reliability analysis of type-4 RPMs. This analysis bounds the probability that a future observation will fall outside
both theσ-volumevσ(x, µ, τmax, ν̂(λ)) and the rangeIy(x, P̂ ). As before, the containment condition (31) plays a
key role in the evaluation of such a bound.

Example 5. Next we derive two type-4 RPMs forτmax = 1 and the same setup used earlier. The two RPMs differ
in the value ofλ used to calculatêν. Becauseτmax < τ∗max = 1.4094, there is no type-3 RPM that can tighten the
σ-volume as much. This illustrates the limitations on the probabilistic performance resulting from type-3 RPMs.

The first RPM, referred to as RPM F, usesλ = 1. Hence we will require that all 150 observations be less than
one standard deviation from the mean function. This setting led to RPM A in Example 1, so we haveEx[νy] =
ν̂1 = 180.3824. With ν̂ available, we then solve for̂P using (32). This leads tôp = [−12.9981,−1.1488,−0.8339,
0.0012, −0.0379, −0.0006, 0.0032]>, and p̂ = [13.8920,−1.1488, −0.8339, 0.0012, −0.0379, 0.0001, 0.0032]>

andEx[δy] = 13.4714. Therefore, whereas the first and sixth component ofp vary in a range, the other ones can be
treated as fixed constants. The performance of RPM F, which is shown in Fig. 7, is given by bothEx[δy] = 13.4714
andEx[νy] = 180.3824, which are128% and225% worse/larger than those of RPM D. Note that the containment
condition holds for allx ∈ X. Bothvσ(x, µ̂, τmax, ν̂(λ)) andIy(x, P̂ ) are centered about the LS prediction. This is
not the case for other values ofτmax (not shown). Because most of the observations are close to the mean function, it
is natural to expect that neglecting a few outliers will considerably tighten the prediction.

We now calculate a type-4 RPM forλ = 143/150. This model, called RPM G, is shown in Fig. 8. The solution to
OP3 led to RPM C for whichEx[νy] = 36.3341. With ν̂ available, we then solve for̂P using (32), which yields the
verticeŝp = [−10.2605,−3.8559,−0.8480, 0.0002,−0.0420,−0.0002, 0.0032]>, andp̂ = [2.9670, 0.016,−0.8200,

0.0022, −0.0338,−0.0001, 0.0032]>. Therefore, according to the spread of the output’s range, the first, second,
and fifth components ofp are the dominant contributors. The performances of RPM G areEx[δy] = 12.3649 and
Ex[νy] = 36.3341. These values are8% and80% better/smaller than those of RPM F. The containment condition,
which will be used to quantify the model’s reliability, does not hold atx = 0 (not seen in Fig. 8). The support set
of p1 is not centered about its expected value of−0.8734 (see example 1). This causes a sizable offset between the
mean function and the center ofI(x, P̂ ). This is further evidence thatvσ(x, µ̂, 1, ν̂(143/150)) contains most of the
observations whereas outliers only affectIy(x, P̂ ), whose boundaries do not coincide with anyσ surface.
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FIG. 7: RPM F: type-4 RPM forλ = 1 andτmax = 1.
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FIG. 8: RPM G: type-4 RPM forλ = 143/150 andτmax = 1.

To better compare the probabilistic performance of type-3 RPMs against type-4 RPMs we make use of the invariant
in Eq. (26). The comparison of RPM D with RPM F, for whichλ = 1, yieldsID = IF = 180.38. As such, changing
the order of the OP sequence did not render any improvement. The comparison of RPM E with RPM G, for which
λ = 143/150, yieldsIE = 50.06 andIG = 36.33, respectively. Therefore the prioritization of the variance over the
support set improves the probabilistic performance by more than27%. As expected, the improvement in probabilistic
performanceEx[νy] often causes a degradation of the nonprobabilistic performanceEx[δy].

The comparison ofFκ for RPM F and RPM G (not shown) yields the same conclusions as drawn from Fig. 4. In
this case RPM G is the better empirical model forλ% of the observations, whereas RPM F is the better model for
the full data ensemble. As before, this illustrates the chance-constrained character of the formulation. As with type-2
RPMs, type-4 RPMs do not require prescribing the outliers in advance.

Volume 5, Number 5, 2016



484 Crespo, Kenny, & Giesy

4.5 Discussion

There are infinitely many CDFs withFp matching the requirements on the mean, variance, and support set resulting
from the above formulations. One way to fully characterize characterizeFp given the features of a type-1 or type-2
RPM, is to assume thatp is a vector of uncorrelated normal random variables. For a type-3 and type-4 RPM, this can
be attained by assuming thatFp is an uncorrelated generalized beta random vector. The prescription of uncertainty as
a probability box eliminates the need for such assumptions. The probability boxes prescribed in [11] account for all
possible random vectors conforming to such restrictions.

The formulations above assume that the parameters inp are uncorrelated. Preliminary experiments enablingc
to take on nonzero values led to improved probabilistic performances. This practice requires makingc an additional
decision variable in Eqs. (24), (28), and (29), and making the consistency conditions (17) and (18) additional inequality
constraints. The reliability assessment of such RPMs, however, remains elusive.

4.6 Model Selection

A few comments regarding the use of the above formulations is in order. Note that the boundaries of type-1 IPMs and
the limits of type-1 RPMs are driven by extreme observations, possibly having a small chance of occurrence. As such
the resulting prediction is wider and thus less informative than those resulting from the other formulations. Type-2
RPMs tighten the prediction by neglecting extreme observations. If such observations fall within the long probability
tails of the DGM, the resulting prediction is considerably better than that of type 1 RPMs. In type-3 and type-4 RPMs,
extreme observations prescribe the support of the process, whereas only a fractionλ of them prescribes the variance.
This fraction is chosen such that the informative character of the probabilistic prediction, which is where the bulk of
the probability lies, is improved. Type-4 RPMs attain a better probabilistic performance than type-3 RPMs, whereas
type-3 RPMs are better suited to describe the output’s range.

A simple case study comparing alternative metamodeling techniques is presented next. Figure 9 shows theσ

volume corresponding toτmax = 1 that results from (i) a Gaussian process (GP) model, (ii) a prediction based on
the confidence intervals (COI) for the coefficients of the linear regression, (iii) a type-2 RPM forλ = 143/150, (iv)
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FIG. 9: σ-volumevσ for τmax = 1 resulting from a few metamodeling techniques.
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a type-2 RPM forλ = 129/150, and (v) a prediction interval (PI).11 All parametric techniques will use the same
polynomial structure used in previous examples. The GP model uses a zero-mean function and the square exponential
covariance function. Note that theσ volume corresponding to the GP, which implicitly assumes the structure in (1),
excludes 21 data points, whereas the COI leaves29 observations out. The first RPM led to RPM C (see example 3),
while the second RPM was built to exclude the same number of outliers as the GP model. The RPMs attain the desired
number of outliers by design, without making any assumption on the DGM, whereas the other methods require that the
assumptions on the DGM (e.g., the DGM being a Gaussian process, the measurement/prediction error being normally
distributed) be true in order to yield an accurate prediction. Note that the RPMs adjust more tightly to the spread
of the data (i.e., it contracts and expands where needed), and the COI is excessively varying, whereas the GP and
PI have a fairly constant width where the data is present. In particular, the variance of the width of theσ volume
for the GP, COI, the type-2 RPMs, and the PI are0.02, 1101, 35.46, 38.51, and0.33, respectively. Regarding GP
models, the largest aleatory spread of the DGM reached at somex in X prescribes the global predicted variance
throughoutX. The calculation of an RPM requires solving a sequence of OPs, which for the convex case can be
done very efficiently for a large number of decision variables and constraints, i.e., on the order of105 using standard
optimization algorithms. This enables considering problems with many more data points, such as might be wanted in a
high-dimensional input problem, than alternative approaches. For instance, GP models are restricted to a few thousand
points before becoming computationally intractable. Numerical experiments performed by the authors indicate that
the computational complexity of IPMs is about 2 orders of magnitude less than that of GP models. Whereas solving
for a GP became numerically intractable for the setup listed above (it was still running after 36 h), an IPM was solved
in about 3 min (using a desktop computer with modest hardware capabilities and standard software).

5. RELIABILITY

This section presents a framework for bounding the reliability of the predictor models proposed above. The reliability
of an arbitrary modelE , r(E), is the probability that a future observation will be within the predicted interval-valued
function(s). The developments that follow are based on Scenario Optimization Theory [12–15]. Denote byP the
unknowndistribution of the DGM from which the points of the data sequencez are obtained.P can be interpreted as
a probabilistic cloud in theX × Y space. The case in whichy is a deterministic function ofx only is a particular
case whereP is concentrated over the function. A generalP leads toy being an arbitrary random process ofx. No
assumption is made on the underlying structure ofP. The following theorem enables bounding a model’s reliability
whenever the OP used for its calculation is convex [15].

Theorem 1. Let z be a data sequence ofN independent elements resulting from a stationary DGM. Suppose the
modelE is calculated by solving a convex constrained OP having a unique solution based onz. Furthermore, assume
that k observations out of theN available have been discarded when calculatingE . Assumek < N − d, whered
is the number of optimization variables used to calculateE . Then, for any confidence parameterβ ∈ (0, 1) and any
reliability parameterε ∈ (0, 1) which satisfy

(
k + d− 1

k

) k+d−1∑

i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (33)

then
Prob PN [r(E) ≥ 1− ε] > 1− β. (34)

This theorem provides an assessment of unobserved data. The theorem states that the reliability ofE is no worse
than1− ε with probability greater than1−β. As for the probability1−β, one should note thatE is a random model
by virtue of the randomness inP prescribingz. Therefore its reliability can be greater than or equal to1− ε for some
random observations but not for others, andβ refers to the probabilityPN = P× · · · × P of observing a bad set ofN

11The COI and the PI are both based on a confidence level of100(1− 0.6827)%, which corresponds toτmax = 1 for a Gaussian
output.
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samples such that the reliability of the model is less than1− ε. Parameterε is referred to as the reliability parameter,
while β is the confidence parameter. It is worth noting that the confidence parameter can be made small enough that it
loses any practical significance andr(E) ≥ 1−ε. This can be done without lettingN be too large, becauseβ vanishes
exponentially withN . Note that assessing the reliability of the model does not require making any assumptions onP,
and that the result is not asymptotic, i.e., it is valid for any finite value ofN .

Equation (34) is a fundamental relation linking the amount of information available (represented by the number of
observationsN and the number of discarded data pointsk), the complexity of the model (represented by the number
of decision variablesd of the OP), and the probabilistic levels of reliabilityε and confidenceβ. Inequality (33) should
be interpreted as a relationship among five different variables,ε, β, N , k, andd. We can solve for optimal values of
any of these variables depending upon the needs of the application.

5.1 Reliability of Type-1 IPMs

The reliability of type-1 IPMs, to be denoted asI, is defined as

r(I) = ProbP
[
(x, y) ∈ Iy

(
x, P̂

) ]
. (35)

The convexity of the OP1 enables the direct application of Theorem 1.

5.2 Reliability of Type-1 and Type-2 RPMs

Denote byR any type-1 or type-2 RPM. The reliability ofR is defined as

r (R) = ProbP {(x, y) ∈ vσ (x, µ, τmax, ν̂(λ))} . (36)

The convexity of OP2 enables the direct application of Theorem 1 to type-1 RPMs. This includes the cases in which
none (k = 0) and some (k > 0) of the observations are removed from the data set. In contrast to OP2, OP3 is
nonconvex. This opens the possibility of (28) having multiple optima. The RPMs corresponding to each local optima
will likely be different. Because type-2 RPMs are calculated by solving a nonconvex program, Theorem 1 cannot be
applied directly. However, the reliability of such models can be established by using theprinciple of equivalence(PE).
This principle is based on identifying an auxiliary convex formulation that will result in the very same empirical model
found by solving the nonconvex formulation. If this is attained, the reliability of the model, which is independent of the
means used to calculate it, can be rigorously evaluated via the auxiliary formulation. This approach can be applied to
type-2 RPMs. In particular, the solution to OP3 using the original data sequencez for a given value ofλ is equivalent12

to the solution of OP2, which is a convex OP, with the data sequencew. Because only theN − k∗ elements inw,
where

k∗ = bN(1− λ)c, (37)

are required by the auxiliary program, the reliability of type-2 RPMs is given by (34) withk = k∗ in (33). Thesek∗

observations satisfyFκ(ν̂)(κ) > λ.

5.3 Reliability of Type-3 and Type 4 RPMs

Denote byR̂ any type-3 or type-4 RPM. The reliability of̂R is defined as

r(R̂) = ProbP
{

(x, y) ∈ Iy

(
x, P̂

)
∩ vσ (x, µ, τmax, ν̂(λ))

}
. (38)

The following theorem provides the means to boundr(R̂):

12WhenEx[δy] is evaluated by the sample mean, equivalence is attained by usingw to evaluate the constraints andz to evaluate
the cost function.
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Theorem 2. Let R̂ be a type-3 or type-4 RPM based on the data sequencez of N independent elements obtained
from a stationary DGM. When the containment condition (31) holds, we have

Prob PN

[
r(R̂) ≥ 1− ε

]
> 1− β, (39)

whereε andβ are given by (33), withd = np andk = k∗. Otherwise,ε = ε1 + ε2 andβ = β1 + β2, whereε1 is
given by

2np−1∑

i=0

(
N

i

)
εi

1(1− ε1)N−i ≤ β1, (40)

whereasε2 andβ2 are given by (33) ford = np andk = k∗.

Proof. When the containment condition holds, the two events defining the reliability are dependent andr(R̂) =
Prob P [(x, y) ∈ vσ]. In this case the reliability is given by Theorem 1 after applying the PE to the nonconvex OPs
(29) or (28) to type-3 and type-4 RPMs, respectively. In both casesk = k∗ as defined in (37), andd = np. When
Eq. (31) does not hold, use the boundr(R̂) ≥ Prob P[(x, y) ∈ Iy(x, P̂ )]+Prob P{(x, y) ∈ vσ(x, µ, τmax, ν̂(λ))}−1.
This bound is generally loose, so the actual model’s reliability is probably larger. Each of the two events will be
considered separately. Because the event(x, y) ∈ Iy(x, P̂ ) is enforced by solving the convex OP in (11) or (32)
with N observations, we use Theorem 1 ford = 2np andk = 0 to calculateε1. Conversely, the event(x, y) ∈
vσ(x, µ, τmax, ν̂(λ)) is enforced by solving the nonconvex OPs in (29) for a type-3 RPM and (28) for a type-4 RPM.
The PE for an auxiliary convex OP withk = k∗ andd = np leads toε2. Theorem 2 results from substituting these
expressions into Theorem 1.

Although the RPMs corresponding to different local minima will likely be different, they admit the same reliability
upper bound (i.e., the auxiliary problems use the same values forN , k, andd; thus for a givenβ they will lead to the
same value ofε). Hence having different sets ofk outliers might lead to RPMs with different performance values for
the same reliability upper bound. The actual reliability of the model, however, will likely be different.

Example 6. The reliability of RPM D and E, which are type-3 RPMs, is considered first. Since neither model satisfies
the containment condition (31), the reliability of each event must be added. Whereas the first event in (38), for which
N = 150, k = 0, andd = 14, yields 1 − ε1 = 0.8452 with confidence1 − β1 = 0.99, the second event, for
which N = 150, k = 0, andd = 7, leads to1 − ε2 = 0.9058 with the same confidence. Therefore the reliability
of RPM D is no less than1 − ε1 − ε2 = 0.7510 with confidence1 − β1 − β2 = 0.98. In the case of RPM E
we have the same value forε1 as that for RPM D, whereas for the second event, for whichN = 150, k = 7,
andd = 7, leads to1 − ε2 = 0.7738 with confidence1 − β2. Therefore the reliability of RPM D is no less than
1 − ε1 − ε2 = 0.6190 with confidence1 − β = 0.98. Hence discarding seven outliers improved performance
by 74% at the expense of a reduction in reliability of17.6%. Finally, we will evaluate the reliability of RPM F
and G, which are type-4 RPMs. Recall that the containment condition holds for RPM F but not for RPM G. The
reliability of RPM F, for whichN = 150, k = 0, andd = 7, is no less than1 − ε = 0.8032 with confidence
1 − β = 0.99. In the case of RPM G, the first event in (38), for whichN = 150, k = k∗ = 7, andd = 7,
leads to1 − ε1 = 0.7682 with confidence1 − β1 = 0.995, whereas the second event, for whichN = 150, k =
0, andd = 14, leads to1 − ε2 = 0.8372 with confidence1 − β2 = 0.995. Therefore the reliability of RPM
G is no less than1 − ε1 − ε2 = 1 − ε = 0.6054 with confidence1 − β = 0.99. The values forβ1 and β2

chosen makeβ for RPM F and RPM G equal, so their reliability can be compared. The reduction of21.19% in the
reliability of RPM G relative to that of RPM F is affected by the conservatism in Theorem 2. This illustrates the
benefits of satisfying the containment condition. This example illustrates the typical trade-off between performance
and reliability. These figures of merit should be traded off until the desired balance is reached. This balance can be
reached by changing the number of observationsN , of outliers viaλ, or by changing the model’s structure vianp,
which prescribesd.
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5.4 Using the LS Parameter Estimate as the Mean Parameter

The selectionµ = µ̂ made above is subjective and solely based on engineering grounds. Unfortunately, using the
data sequencez to derive both the meanµ and the volumevσ(x, µ, τmax, ν̂) violates the independence assumption
of Theorem 1. The reason for this violation is linked to the concept of support constraints and how they are used in
the corresponding proof [15]. Asupport constraintis defined as a constraint whose removal from the OP changes
the optimum. The rationale supporting Theorem 1 makes use ofd being the largest number of supporting constraints
a convex OP admits. Removing an observation fromz changeŝµ and thus all the constraints in (24), (28), and (29)
that depend on̂µ. Hence, strictly speaking, choosingµ = µ̂ makes all such constraints support constraints, e.g., there
are2N supporting constraints for type-1 RPMs. This unwanted dependence is expected to be minor for moderately
large values ofN as the LS parameter estimate approaches its asymptotic value and becomes practically insensitive to
additional data. As such we expect the theory to be “robust” and maintain its validity whenµ andvσ(x, µ, τmax, ν̂) are
based on the same data. This unwanted dependency is eliminated by choosing a value forµ that is independent from
the data used to build the RPM. This, for instance, can be attained by partitioning the data set into two subsets, using
one to calculatêµ via (12) and using the other one to calculatevσ(x, µ̂, τmax, ν̂) via (24), (28), or (29). Alternatively,
we can makeµ an additional design variable in (24), (28), and (29). This practice not only eliminates the unwanted
dependency among constraints, but also yields RPMs having an improved performance (a tighterσ volume).

6. CONCLUSIONS

This paper proposes techniques for constructing linear parametric models describing key features of the distribution of
an output variable given input-output data. This structure enables a rigorous characterization of the uncertainty in the
model’s parameters, of key features of the prediction, and of the reliability of the resulting metamodel. Because such
features conform to all possible probabilistic models forp, the resulting characterization of both the uncertainty and
the predicted output are distribution-free. A few types of models exhibiting various degrees of insensitivity to outliers
are developed. The differences between RPMs and standard metamodels are both conceptual and practical. First and
foremost among them is the ability to formally evaluate the reliability of the resulting metamodel without having to
make any assumptions on the structure of the underlying data generating mechanism. This is a substantive advantage
over alternative techniques. Furthermore, the calculation of the proposed RPMs requires solving a sequence of opti-
mization programs, which for the convex case can be done very efficiently for a large number of design variables and
constraints, i.e., on the order of105 using standard optimization algorithms. This enables considering problems with
many more data points, thus input dimensions, than alternative approaches, e.g., Gaussian Process models become
numerically intractable after a few thousand data points.
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