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In the ensemble Kalman filter (EnKF), uncertainty in the state of a dynamical model is represented as samples of the
state vector. The samples are propagated forward using the evolution model, and the forecast (prior) mean and covari-
ance matrix are estimated from the ensemble. Data assimilation is carried out by using these estimates in the Kalman
filter formulas. The prior is given in the subspace spanned by the propagated ensemble, the size of which is typically
much smaller than the dimension of the state space. The rank-deficiency of these covariance matrices is problematic,
and, for instance, unrealistic correlations often appear between spatially distant points, and different localization or
covariance tapering methods are needed to make the approach feasible in practice. In this paper, we present a novel way
to implement ensemble Kalman filtering using optimization-based sampling, in which the forecast error covariance
has full rank and the need for localization is diminished. The method is based on the randomize then optimize(RTO)
technique, where a sample from a Gaussian distribution is computed by perturbing the data and the prior, and solving
a quadratic optimization problem. We test our method in two benchmark problems: the 40-dimensional Lorenz ’96
model and the 1600-dimensional two-layer quasi-geostrophic model. Results show that the performance of the method
is significantly better than that of the standard EnKF, especially with small ensemble sizes when the rank-deficiency
problems in EnKF are emphasized.
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1. INTRODUCTION

In dynamical state estimation, or data assimilation, the distribution of the current state of a dynamical model is esti-
mated by combining information from the forecast of the current state with new measurements that become available.
Viewed from the Bayesian perspective, the forecast acts as theprior, which is combined with thelikelihoodto obtain
the posteriordistribution. If the forecast and observation models are linear, and errors are assumed to be normally
distributed, the mean and the covariance matrix of the state can be computed with the Kalman filter (KF) formulas
[1]. In the extended Kalman filter (EKF), the models are linearized and the KF formulas are applied. However, in
high-dimensional systems, often encountered, e.g., in geophysics, the required matrix manipulations are prohibitively
expensive. The current practice in large-scale data assimilation, such as weather prediction, relies mostly on variational
methods, such as 3D-Var [2] and 4D-Var [3].

Recently, ensemble filtering methods that use Monte Carlo approximations for the covariance matrices have be-
come popular. In ensemble filtering, initiated by the introduction of the ensemble Kalman filter (EnKF, [4]), the
covariance matrices are essentially replaced with sample covariance matrices estimated from the ensemble. Posterior
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ensemble members are generated by applying the Kalman filter formulas to randomly perturbed observations. In the
so-called square root ensemble filters [5–7], the prior ensemble is deterministically transformed into the posterior
ensemble, and perturbed observations are not used.

Ensemble filters suffer from a few known problems. Since the dimension in geophysical applications can be very
large and the forward model computationally heavy, the number of samples used in ensemble filtering is typically
many orders of magnitude smaller than the dimension of the state space. This means that the prior covariance matrices
are rank-deficient, and the analysis is restricted to the subspace spanned by the forecast ensemble, which can lead to
ensemble inbreeding [8]. In addition, the prior covariance estimated from the samples can yield unrealistic, strong
correlations between points that are, for instance, spatially distant [7, 9]. For this purpose, different localization and
covariance tapering approaches have been developed, where the unrealistic correlations are cut off from the sample
covariance matrix [10, 11]. Moreover, many ensemble methods underestimate the prior covariance matrices [12],
which can lead to filter divergence, and different covariance inflation mechanisms have been proposed to overcome
these issues [8, 13].

An issue that is perhaps less discussed in ensemble filtering literature is the inclusion of model error in the meth-
ods. In many methods, the only straightforward way to include model error is by randomly perturbing the forecast
ensemble. The model error covariance matrix often cannot be directly inserted into the filtering equations, since it
would prevent the memory and CPU efficient low-rank representation of the matrices which makes ensemble filters
computationally attractive. The underestimation of the uncertainty in the state estimates due to missing model error
terms is often compensated by introducing covariance inflation.

In this paper, we propose an ensemble filtering method, where new samples are directly drawn from the posterior
distribution. For the sampling, we use an optimization-based technique calledrandomize then optimize(RTO) that
is based on repeatedly minimizing a randomly perturbed negative log-posterior cost function [14]. If the observation
operator is linear, we can show that the method yields exact samples from the Gaussian approximation to the posterior,
but the method can also be implemented for nonlinear observation models. In the proposed method, the model error
covariance matrix is included directly in the minimized cost function, which yields a full-rank forecast error covariance
matrix. Including the model error term has a regularizing effect on the forecast error covariance, and the problem of
spurious correlations (and thus the need for localization) is diminished. Moreover, possible covariance inflation can
be directly implemented via tuning of the model error covariance matrix.

The developed method is close to the recently introduced variational ensemble Kalman filtering (VEnKF) ideas
[15, 16]. In VEnKF, the posterior estimate is computed by solving an optimization problem, and an approximation
of the posterior covariance is obtained from the search path of the optimizer. The new ensemble is then generated
using the covariance approximations. In the method proposed in this paper, no approximations are made and the new
ensemble is drawn exactly from the Gaussian approximation to the posterior, assuming that the observation model
is linear. The method is computationally more challenging, since it involves solving a large-scale optimization task
many times. However, the optimizations needed in ensemble generation can be easily parallelized.

The RTO approach is, in principle, close to the Ensemble of Data Assimilations (EDA) approach developed at
ECMWF [17], where multiple 4D-Var optimization problems are solved with perturbed observations and perturbed
background (prior) states to quantify the uncertainty in the state estimates. Here, the approach is developed and tested
in an ensemble Kalman filtering context.

The optimization-based ensemble filter is tested with two benchmark models: a 40-dimensional Lorenz model
and 1600 dimensional two-layer quasi-geostrophic model. In both cases, the method performs much better than the
classical EnKF, especially with small ensemble size when the rank-deficiency problem in EnKF is highlighted.

The paper is organized as follows. In Section 2 we briefly review the basics of ensemble Kalman filtering, and
in Section 3 we present our optimization-based approach. Section 4 is reserved for discussion and specific remarks
related to the method. Section 5 presents the numerical examples and Section 6 concludes the paper.

2. ENSEMBLE KALMAN FILTERING

Let us start by considering the problem of estimating the statexk of a nonlinear dynamical modelM at discrete times
k based on observationsyk, when the observation model is linear:
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xk = M(xk−1) + qk (1)

yk = Kkxk + rk. (2)

In the above system,Kk is them × d observation operator, thed × 1 vectorxk represents the model state, and
observed data are denoted by them × 1 vectoryk. Model errorqk and observation errorrk are assumed to be
normally distributed zero mean random vectors with covariance matricesQk andRk, respectively.

The standard method of solving the above problem is the extended Kalman filter (EKF), where the nonlinear
model is linearized,Mk = ∂M(xest

k−1)/∂x, and the Kalman filter formulas are applied. Using our notation, the EKF
algorithm is can be written as follows:

The extended Kalman filter algorithm, givenxest
0 , Cest

0 , andk = 1.

1. Move the state estimate and covariance in time:

a. Compute the prior meanxp
k = M(xest

k−1).

b. Compute the prior covarianceCp
k = MkCest

k−1M
T
k + Qk.

2. Combine the prior with observations:

a. Compute the Kalman gainGk = Cp
kK

T
k (KkC

p
kK

T
k + Rk)−1.

b. Compute the state estimatexest
k = xp

k + Gk(yk −Kkx
p
k).

c. Compute the covariance estimateCest
k = Cp

k −GkKkC
p
k.

3. Setk → k + 1 and go to step i.

In high-dimensional problems, the computational requirements of EKF become prohibitively high; even storing the
covariance matrices needed in the computations can be infeasible. In ensemble filtering, the uncertainty in the state
estimatexk is represented asN samples, here denoted assk = (sk,1, sk,2, ..., sk,N ), instead of a covariance matrix.
The ensemble Kalman filter (EnKF, [4, 12]) essentially replaces the state covariance matrices in KF with the sample
covariance calculated from the ensemble. The sample covariance can be written asCov(sk) = XkXT

k , where

Xk = ((sk,1 − sk), (sk,2 − sk), ..., (sk,N − sk)) /
√

N − 1. (3)

The sample mean is denoted bysk. Using our notation, the EnKF algorithm can be formulated as follows.

The ensemble Kalman filter algorithm, givensest
0 andk = 1.

1. Move the state estimate and covariance in time:

a. Move ensemble forward and perturb members with model error:
sp
k,i = M(sest

(k−1),i) + qk,i, i = 1, ..., N .

b. Calculate sample meansk and covarianceCp
k = XkXT

k .

2. Combine the prior with observations:

a. Compute the Kalman gainGk.

b. Update ensemble memberssest
k,i = sp

k,i + Gk(yk −Kks
p
k,i + rk,i).

c. Calculate state estimate as the sample meansest
k,i.

3. Setk → k + 1 and go to step i.
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In the above algorithm, vectorsqk,i andrk,i are realizations of the model error and observation error distributions,
which are Gaussians with covariancesQk andRk, respectively.

The EnKF is easy to implement and also computationally feasible for large-scale models. This is due to the fact
that the prior covarianceCp

k in the above algorithm can be kept in a “low-rank” ensemble formXkXT
k . However,

at the same time, one could criticize that the analysis is restricted to the subspace of the state space spanned by
the prior ensemble. The rank-deficiency of the prior covariance matrix can cause many problems, such as ensemble
inbreeding, introduction of spurious correlations, and underestimation of the covariance matrix. To overcome these
issues, different localization (covariance tapering) and covariance inflation techniques can be applied. In covariance
tapering, the prior covariance matrix is multiplied element-wise with a tapering matrix that cuts off the unphysical
long distance correlations; see [18, 19]. In covariance inflation, the prior covariance matrix is artificially enlarged to
avoid filter divergence due to too narrow prior covariance matrix.

Recently, several other ensemble filtering methods have been developed to overcome some issues in the standard
EnKF. For instance, the so-called square root ensemble filters, see [5–7], make a deterministic transformation from
the prior ensemble into the posterior ensemble so that the posterior sample statistics match with theory. In square root
filtering, no perturbed observations are used, and the methods can have more favorable error scaling as a function of
ensemble size. However, the square root filters also operate with rank-deficient matrices and the possible problems
of ensemble inbreeding, covariance underestimation, spurious correlations, and including model error remain. In
our optimization-based ensemble filter introduced next, the model error is included directly as a covariance matrix,
which regularizes the sample covariance matrix and diminishes spurious correlations; see Section 4 for a small-scale
demonstration. Moreover, covariance inflation can be obtained via tuning the model error covariance matrix. In the
proposed method, the new ensemble is always randomly resampled from the posterior in the full state space, which
can avoid the problem of ensemble inbreeding.

3. OPTIMIZATION-BASED SAMPLING IN ENKF

Combining the previous forecast with the new observations yields the following probability density for the state at
timek:

π(xk) ∝ exp
(
−1

2
||yk −Kkxk||2Rk

− 1
2
||xk − xp

k||2Cp
k

)
, (4)

where the notation||x||2B = xT B−1x. In the case of a linear observation operator as above, we can use therandomize
then optimize(RTO) procedure, which has been successfully used in statistical analysis of inverse problems [14], to
get independent samples fromπ(xk).

The RTO technique for sampling from a densityp(x) ∝ exp(−0.5||b − Ax||2C) works as follows: generate
random datâb ∼ N(b,C) and then repeatedly solve the linear least squares problemx̂ = arg min ||b̂ −Ax||2C. It
is straightforward to verify that the RTO approach produces samples from the correct density. If the model is linear,
the least squares solution can be written down analytically:x̂ = (AT C−1A)−1AT C−1b̂ = Pb̂; see, e.g., [20].
That is, we have a linear mapping from the distribution of the data to the distribution of the LSQ solution, and we
can write down the mean and covariance matrix of the solution using the basic formulasE(Pb̂) = PE(b̂) and
Cov(Pb̂) = PCov(b̂)PT :

E(x̂) = (AT C−1A)−1AT C−1b (5)

Cov(x̂) = (AT C−1A)−1. (6)

These are the well-known formulas for the mean and the covariance of the Gaussian densityp(x) defined above; that
is, by repeatedly generating new data and solving the resulting LSQ problem, we obtain samples from the correct
density.

Returning to the original density of interest (4), we can writeπ(x) in the same form asp(x) by defining

A =
[

Kk

I

]
, b =

[
yk

xp
k

]
, C =

[
Rk 0
0 Cp

k

]
. (7)
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To use RTO for generating a sample fromπ(x), we generate new datâyk ∼ N(yk,Rk) and a new prior mean
x̂p

k ∼ N(xp
k,Cp

k), and then minimize the quadratic expression

||b̂−Ax||2C = ||ŷk −Kkxk||2Rk
+ ||xk − x̂p

k||2Cp
k
. (8)

The form of the prior covariance matrixCp
k depends on the data assimilation method applied. In 3D-Var we would

haveCp
k = Bk, whereBk is the background covariance matrix given directly by the user without propagating the

covariance at the previous time step forward. For EKF,Cp
k = MkCest

k−1M
T
k + Qk. For our ensemble Kalman filter

implementation, we replace the “dynamical” part of the covariance matrix with the empirical covariance estimate, and
define

Cp
k = XkXT

k + Qk, (9)

where
Xk = ((sk,1 − xp

k), (sk,2 − xp
k), ..., (sk,N − xp

k))/
√

N. (10)

Here, the ensemble members are not randomly perturbed with the model error as in EnKF, since the model error is
included directly as a matrix as in EKF. That is, the ensemble members aresp

k,i = M(sest
(k−1),i). Note also that the

prior mean is taken to be the predictionxp
k as in EKF and not the ensemble mean as in EnKF.

In order to implement RTO sampling, we need to be able to produce samples from normal distributions with
covariance matricesRk andCp

k. That is, we need to compute symmetric decompositions (square roots) of the matrices.
In practice, the measurement error covariance matrixRk is often a (block) diagonal matrix, and it should be feasible to
compute, e.g., the Cholesky decomposition of the matrix. For the prior covariance matrix, the “ensemble part”XkXT

k

is directly in a square form, and only the square root ofQk, denoted byQ1/2
k , is needed. Then, a random samplex̂

from a zero centered normal distribution with covariance matrixCp
k can be computed as follows:

x̂ = Q1/2
k zd + XkzN , (11)

whered is the dimension of the state space,N is the number of samples used in the ensemble Kalman filter, andzd

denotes ad-dimensional standard normal vector.
Moreover, if iterative optimization methods are used in the generation of the new ensemble, we need to be able

to evaluate the quadratic expression (8). The likelihood term is usually straightforward, since the measurement error
covariance matricesRk are often (block) diagonal. For the prior term, we can apply the matrix inversion lemma, see
[21], which yields

(Cp
k)−1 = (XkXT

k + Qk)−1 (12)

= Q−1
k −Q−1

k Xk(I + XT
k Q−1

k Xk)−1XT
k Q−1

k . (13)

If the form ofQk is simple (e.g., block diagonal),Q−1
k can be computed and the above expression can be used when

evaluating (8) without handling full dense matrices of sized × d. Note that the inversion left in the above formula is
only for aN ×N matrix, whereN is the ensemble size, which is typically limited to a small number.

Finally, the optimization-based ensemble Kalman filter can be formulated as an algorithm as follows:

The RTO ensemble Kalman filter algorithm, givensest
0 andk = 1.

1. Move the state estimate and ensemble in time:

a. Move the state estimate forward:xp
k = M(xest

k−1).

b. Move ensemble forward:sp
k,i = M(sest

(k−1),i), i = 1, ..., N .

c. DefineCp
k = XkXT

k + Qk, whereXk is given by (10).

2. Combine the prior with observations:
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a. Compute the state estimatexest
k by minimizing||yk −Kkxk||2Rk

+ ||xk − xp
k||2Cp

k
.

b. Sample the new ensemblesest
k,i by repeatedly generatinĝyk ∼ N(yk,Rk) and x̂p

k ∼ N(xp
k,Cp

k) and
minimizing ||ŷk −Kkxk||2Rk

+ ||xk − x̂p
k||2Cp

k
.

3. Setk → k + 1 and go to step i.

Next, we give some specific remarks and discussion related to the presented algorithm.

4. REMARKS

Relation to EnKF. The proposed method is close to the original ensemble Kalman filter of [4], where the Kalman
filter formulas are repeatedly applied to perturbed observations and perturbed model forecasts. A difference between
the approaches is that in EnKF the prior covariance matrix is given in the subspace spanned by the ensemble,Cp

k =
X̃kX̃T

k , whereX̃k are the propagated samples perturbed with random draws from the model error distribution. In our
method, the prior covariance matrix isCp

k = Qk + XkXT
k , whereXk are the unperturbed ensemble members. As

we see in our examples, this small difference can have a significant effect on the performance of the method. Another
difference to EnKF is that the prior mean is taken to be the predicted state estimate as in EKF, not the mean of the
predicted ensemble. According to our experience, this difference has a smaller impact on the performance.

Note that we could also plug in the alternative forecast error covariance matrix formulationCp
k = Qk + XkXT

k

directly to the Kalman filter formulas, and generate the new ensemble from the resulting Gaussian posterior. This
would give equivalent results compared to RTO-EnKF; the optimization step would be carried out with direct formulas
instead of numerical optimization routines. However, this is applicable only in small-scale problems, since one would
need to operate with fulld × d covariance matrices. Here, the RTO technique provides an efficient way to produce
samples from the high-dimensional Gaussian distributions without having to handle full covariance matrices.

Spurious Correlations and Localization.As mentioned in Section 2, many ensemble methods suffer from phys-
ically unrealistic correlations which are caused by rank-deficient covariance matrices computed using a small number
of samples. Different covariance tapering (or localization) techniques are often used to cut off these correlations, for
instance, by taking the element-wise product of the sample covariance matrices and compactly supported covariance
functions [19]. We note that in RTO-EnKF, the problem of spurious correlations is diminished. This is due to the above
mentioned difference in the way the prior covariance matrix is defined: in the proposed methodCp

k = Qk + XkXT
k ,

whereas in standard EnKF (and many other ensemble filters)Cp
k = X̃kX̃T

k . That is, the model error covariance has a
regularizing effect onCp

k. The two ways of computing the prior covariance matrix are illustrated in Fig. 1, where the
correlation matrices at one time instant are compared in the Lorenz toy model case described in Section 5.1. One can
clearly see the difference in the amount of strong correlations between spatially distant points; off-diagonal entries are
overall significantly higher for EnKF.

Although the need for localization in RTO-EnKF is diminished, a well implemented localization technique is
likely beneficial for RTO-EnKF as well. Inflation can be included in RTO-EnKF by using a tapering matrix that
introduces sparsity to the prior covariance matrix. More specifically, the tapered prior covariance for RTO-EnKF reads
asCp

k = ρ◦ (XkXT
k )+Qk, whereρ is the tapering matrix and◦ denotes the element-wise product. When tapering is

used, the rank of the matrixρ ◦ (XkXT
k ) is increased, and the matrix inversion lemma (13) is no longer applicable for

computing the prior term in the cost function efficiently. However, if a sparseρ is applied and ifQk is simple (e.g.,
block diagonal), the matrixCp

k becomes sparse. This allows us to perform, for instance, a Cholesky factorization that
takes advantage of the sparsity:Cp

k = LkLT
k , whereLk is sparse. Now, the prior term in the optimized cost function

can be computed as

rT
k (ρ ◦ (XkXT

k ) + Qk)−1rk = rT
k (LkLT

k )−1rk = (L−1
k rk)T (L−1

k rk), (14)

whererk = xk − xp
k. Sparsity introduced by tapering was also used to speed up matrix computations in ensemble

Kalman filtering and smoothing in [22].
Localization often improves the performance of ensemble Kalman filters remarkably; see Section 5 for a numerical

example. However, building and tuning the tapering matrix can be complicated; for instance, the distance between
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FIG. 1: Correlation matrices corresponding toCp
k at one time instant of the Lorenz toy model in the RTO-EnKF (left)

and classical EnKF (right) with ensemble sizeN = 10.

different types of state variables can be unclear. Moreover, localization assumes that one has a natural ordering of the
variables available in terms of distance. If this is lacking, localization can be difficult to implement. We note again
that RTO-EnKF already contains regularization for the forecast covariance matrix in the form ofQk, and thus the
localization is less crucial.

Tuning the model error covariance matrix. The model error covariance matrixQk is often considered as a
calibration parameter for filtering methods. Here, we do not consider the tuning ofQk in detail, but point the reader
to [23] and [24] that discuss the estimation of parameterized model error covariance matrices in filtering methods. We
also note that theQk that yields optimal filter accuracy should not contain only “model error,” but also imperfections
in other parts of the assimilation system (for instance, errors related to small ensemble size). Fortunately, in many
cases, including our numerical examples in this paper, a rather broad range ofQk matrices result in acceptable filter
performance in terms of accuracy of the state estimates.

Nonlinear observation operators.The RTO sampling procedure can be carried out with nonlinear observa-
tion operatorsK(x), which makes the target density (4) non-Gaussian, and the resulting optimization problem non-
quadratic. In the nonlinear case, however, it is less clear what the density is that RTO samples from. In our recent
research [26] we have found the density for the nonlinear case, which makes it possible to correct the RTO samples
towards the non-Gaussian posterior using Metropolis-Hastings and importance sampling schemes. However, our ex-
perience with RTO sampling in non-Gaussian static estimation problems suggests that the RTO yields a rather good
approximation to the posterior even without such corrections.

CPU and implementation issues.In small and moderate dimensional linear problems, we can solve the mini-
mization exactly by solving a linear system of equations. In large-scale cases and nonlinear cases, we need to resort to
iterative optimization methods, such as conjugate gradient or quasi-Newton algorithms. The computational cost of the
method is larger compared to many other ensemble methods, since it involves the solution of many large-scale opti-
mization problems. However, the cost function does not include evaluations of the forward model, which is usually the
computational bottleneck in large-scale data assimilation. The dominant cost in the optimization is matrix-vector mul-
tiplication. Moreover, if the observation model is linear, the optimization problems are quadratic, for which efficient
iterative algorithms exist, such as limited memory BFGS and conjugate gradient (CG) methods. These methods are
guaranteed to converge for quadratic problems with positive definite Hessian. Their convergence rate is determined
by the eigenvalues of the Hessian and hence improved convergence rates can be obtained via preconditioning. These
algorithms can converge very fast; for instance, for the 1600-dimensional benchmark problem given in Section 5,
around 10 iterations of the limited-memory BFGS algorithm was sufficient to obtain a posterior sample. In addition,
the optimization tasks for ensemble generation are trivially parallelizable.

Including additional priors. A benefit of the variational formulation of the proposed approach compared to
many other ensemble methods is that it is rather straightforward to include prior information about the state vector,
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for instance, related to the smoothness of the spatial fields. In particular, adding Gaussian priors is easy: with prior
meanm and covariance matrixL, the cost function reads as

||yk −Kkxk||2Rk
+ ||xk − xp

k||2Cp
k

+ ||xk −m||2L, (15)

and in RTO sampling one simply has to perturbm with random numbers drawn fromN(0,L) every time the cost
function is optimized to get a new sample. Including such priors can be problematic in many other ensemble filtering
techniques.

Applicability in variational data assimilation, connection to EDA. As mentioned before, the approach can be
directly used within 3D-Var to obtain samples from the analysis densities, which can in turn be useful in uncertainty
quantification. Optimization-based RTO sampling can also be used within 4D-Var methods. For the strong-constraint
4D-Var, the target density at time stepk can be written as follows:

π4d(xk) ∝ exp

(
−1

2
||xk − xp

k||2Bk
− 1

2

T∑

i=1

||yk+i −K(Mi(xk))||2Rk+i

)
, (16)

whereMi(xk) denotes the evolution model propagated forwardi steps from the initial statexk. The use of RTO sam-
pling in this case would correspond to generating the prior meansx̂p

k ∼ N(xp
k,Bk) and datâyk+i ∼ N(yk+i,Rk+i)

and maximizing the above expression using the generatedx̂p
k andŷk+i. Note that this optimization task is no longer

quadratic and would yield samples from a non-Gaussian density.
Similarly, the approach could be extended to weak-constraint 4D-Var, where the model is not assumed to be perfect

within the assimilation window and is allowed to make jumps:

πw4d(xk,xk+1, ...,xk+T ) ∝ exp

(
− 1

2
||xk − xp

k||2Bk
− 1

2

T∑

i=1

||yk+i −K(Mi(xk))||2Rk+i

− 1
2

T∑

i=1

||qk+i + qµ||2Qk+i

)
,

whereqk+i = xk+i − M1(xk+i−1) are the model jumps,qµ is the model error mean andQk+i are the model
error covariance matrices. Here, in addition to perturbingxp

k andyk+i, one would generate the model error means
q̂µ ∼ N(qµ,Qk+i). This would yield samples from the joint distribution of(xk,xk+1, ...,xk+T ), from which one
can obtain samples from the marginal densities: the last indexk + T corresponds to the filtering distribution and the
intermediate indices are essentially smoothing distributions, as discussed in [26].

A similar approach called Ensemble of Data Assimilations (EDA) is developed and applied to operational NWP
at the European Center of Medium Range Weather Forecasts (ECMWF); see [17]. In EDA, perturbed observations
and forecasts are used to generate an ensemble of 4D-Var data analyses, with the purpose of estimating the analysis
uncertainty; generate more realistic initial state perturbations for ensemble prediction systems, and introduce flow
dependency in 4D-Var background covariance matrices [27]. The difference to our approach is that we formulate the
approach in the EnKF context, whereas EDA is is based on 4D-Var.

Possible pitfalls.A few pitfalls remain in the proposed approach. First of all, the method assumes that the repeated
optimization tasks can be solved accurately; if the optimizers do not converge, the quality of the obtained samples can
be poor. Moreover, many other ensemble filtering methods allow assimilating observations in batches; see [7, 11],
which is handy in high-dimensional problems, especially if the number of assimilated observations is high. In the
proposed method, all observations are assimilated in one step, and it is not clear if processing observations in batches
is possible.

5. NUMERICAL EXAMPLES

In this section, we compare the proposed method to the standard EnKF in two synthetic examples. The first example is
the well-known Lorenz ’96 benchmark problem (a 40-dimensional nonlinear chaotic ODE system), that shares some
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characteristics with weather models [28, 29]. The second example is a 1600-dimensional two-layer quasi-geostrophic
model, which is often used in data assimilation benchmarking; see, e.g., [30].

For comparing methods, we use the root mean squared (RMS) error in the state estimate, written as

RMSk =

√
1
d
||xest

k − xtrue
k ||2 (17)

where, at iterationk, xest
k is the filter estimate,xtrue

k is the truth used in data generation, andd is the dimension of the
state vector. While the RMS error indicates how well a method is able to estimate the mean of the state, it does not
tell anything about the quality of the uncertainty estimates (e.g., variances) derived from the ensemble. It is known
that EnKF methods can perform quite poorly in capturing this uncertainty [31], and we do not claim that RTO-EnKF
is any better in this respect. The quality of the ensemble methods in quantifying the uncertainty can be monitored via
techniques like rank histograms and ranked probability scores [32, 33]. Here, we do not study how the filters behave
in this sense, and focus only on the accuracy of the mean.

Here, the goal is to demonstrate that the rank deficiency problems are diminished in the RTO-EnKF approach. That
is, we do not comprehensively discuss, for instance, different covariance localization techniques that can significantly
improve the performance of ensemble filters. However, we do compare the methods with localization included and
show that RTO-EnKF can also benefit from localization.

5.1 Lorenz ’96

In this example, we consider the well-known nonlinear and chaotic Lorenz ’96 model [28, 29]. The model shares many
characteristics with realistic atmospheric models and it is often used as a low-order test case for data assimilation
schemes. We use a 40-dimensional version of the model, given as an ODE system as

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, 2, ..., 40. (18)

The state variables are periodic:x−1 = x39, x0 = x40 andx41 = x1. Out of the 40 model states, measurements are
obtained from 24 states. We define the observation operator asK(x) = Kx, where

[K]rp =
{

1, (r, p) ∈ {(3j + i, 5j + i + 2)}
0 otherwise (19)

wherei = 1, 2, 3 andj = 0, 1, ..., 7. Thus, we observe the last three states in every set of five. To generate data, we
add Gaussian noise to the model solution with zero mean and covariance matrix(0.15σclim)2I, whereσclim = 3.641
(climatological standard deviation). In the filtering methods, we useQk = (0.1σclim)2I as the model error covariance
matrix andRk = (0.15σclim)2I as the observation error covariance matrix. As initial guesses in the filtering, we use
xest

0 = 1 andCest
0 = I.

The comparison of the relative error for the EnKF and RTO-EnKF filter estimates is given in Fig. 2 for ensemble
sizesN = 10 andN = 20. One can see that the performance of the RTO-EnKF is significantly better that that of the
standard EnKF, and withN = 10 EnKF fails to converge. With ensemble sizesN ≥ 30, both filters work, roughly
speaking, in a comparable way. That is, the benefit of RTO-EnKF is seen especially with small ensemble sizes, which
was expected, since the problems caused by rank deficiency get worse as the ensemble size gets smaller.

The above comparison is not fair in the sense that a localization technique would likely improve the performance
of EnKF. However, it does suggest that in absence of localization, RTO-EnKF has some desirable properties. We also
compared the methods with localization included. We constructed the tapering matrix using the popular the fifth-order
piecewise rational function [19], where the correlation cutoff length was chosen experimentally so that good filter
performance was obtained. In Fig. 3, we compare the RMS errors of the state estimates withN = 6 andN = 10. One
can see that localization dramatically improves EnKF performance, but also helps RTO-EnKF; with small ensemble
sizes, RTO-EnKF still outperforms the standard EnKF.
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FIG. 2: Comparison of relative error of filter estimates for EKF, EnKF, and RTO-EnKF in the Lorenz ’96 model. For
the ensemble methods, ensemble sizesN = 10 andN = 20 were used.
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FIG. 3: Comparison of relative error of filter estimates for EKF, EnKF, and RTO-EnKF in the Lorenz ’96 model with
localization included. For the ensemble methods, ensemble sizesN = 6 andN = 10 were used.

International Journal for Uncertainty Quantification



Optimization-Based Sampling in EnKF 359

5.2 Two-Layer Quasi-Geostrophic Model

This part is devoted to the two-layer quasi-geostrophic model (QG model) [34], which serves an example of a large-
scale chaotic dynamics in our numerical experiments. We begin by considering the geometry of the QG model and
discuss the system of PDE’s that define the model dynamics. We also highlight the principles of the numerical solution
used to integrate the system. Thereafter, we discuss the settings assigned to the model parameters in our benchmarks
and review the obtained results.

5.2.1 Model Description

The two-layer quasi-geostrophic model simulates atmospheric flow for the geostrophic (slow) wind motions. This
model can be used as a benchmark for data assimilation in NWP systems as it supports some features common
for operational weather models, such as baroclinic instability. At the same time, the QG model has relatively low
computational complexity and requires no special hardware to run. The geometrical domain of the model is specified
by a cylindrical surface vertically divided into two “atmospheric” layers which can interact through the interface
between them. The model also accounts for an orographic component that defines the surface irregularities affecting
the bottom layer of the model. The geometric structure of the model dictates periodic latitudinal boundary conditions,
whereas the values on the top and the bottom of the cylindrical domain are user-supplied constant values. Aside from
the layered structure and boundary conditions, the model parameters comprise the depths of the atmospheric layers,
potential temperature change across the layer interface, and the mean potential temperature. When geometrical layout
of the two-layer QG model is mapped onto a plane it appears as shown in Fig. 4. In the figure, parametersU1 andU2

denote mean zonal flows in the top and the bottom atmospheric layers, respectively. The model formulation we use
is dimensionless, where the nondimensionalization is defined by the length scaleL, velocity scaleU , and the layer
depthsD1 andD2.

The model operates on the terms of potential vorticity and stream function, where the latter one is analogous to
pressure. The assumption of quasi-geostrophic motion leads to a coupled system of PDE’s (20) describing a conser-
vation law for potential vorticity. Essentially, these equations mean that the amount of inflow coming into an infinitely
small volume within an infinitely small time period is compensated by the outflow pouring out of the volume over this
time period, so that the flows are balanced. The conservation law is given as

D1q1

Dt
= 0,

D2q2

Dt
= 0, (20)

whereDi denotes the substantial derivatives for latitudinal windui and longitudinal windvi, defined asDi·/Dt =
∂·/∂t+ui(∂·/∂x)+vi(∂·/∂y); qi denote the potential vorticity functions; indexi specifies the top atmospheric layer
(i = 1) and the bottom layer (i = 2). Interaction between the layers, as well as relation between the potential vorticity
qi and the stream functionψi, is modeled by the following system of PDE’s:

q1 = ∇2ψ1 − F1 (ψ1 −ψ2) + βy, (21)

U

U

1

2

Land

Bottom layer

Top layer

FIG. 4: Geometrical layout of the two-layer Quasi-Geostrophic model.
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q2 = ∇2ψ2 − F2 (ψ2 −ψ1) + βy + Rs. (22)

HereRs andβ denote dimensionless orography component and the northward gradient of the Coriolis parameter,
which we hereafter denote asf0. The relations between the model physic attributes and dimensionless parameters that
appear in Eqs. (21)–(22) are as follows:

F1 =
f2
0 L2

ǵD1
, F2 =

f2
0 L2

ǵD2
, ǵ = g

∆θ

θ̄
,

Rs =
S (x, y)
ηD2

, β = β0
L

U
,

where∆θ defines the potential temperature change across the layer interface,θ̄ is the mean potential temperature,g
is acceleration of gravity,η = U/f0L is the Rossby number associated with the defined system, andS(x, y) andβ0

are dimensional representations ofRs(x, y) andβ, respectively.
The system of Eqs. (20)–(22) defines the two-layer quasi-geostrophic model. The the unknown state of the model,

and thus the target of estimation, is the stream functionψi. For the numerical solution of the system, we consider
potential vorticity functionsq1 andq2 to be known, and invert the spatial Eqs. (21) and (22) forψi. More precisely,
we apply∇2 to Eq. (21) and subtractF1 times (22) andF2 times (21) from the result, which yields the following
equation:

∇2
[∇2ψ1

]− (F1 + F2)
[∇2ψ1

]

= ∇2q1 − F2 (q1 − βy)− F1 (q2 − βy −Rs) . (23)

Equation (23) can be treated as a nonhomogeneous Helmholtz equation with negative parameter− (F1 + F2) and
unknown∇2ψ1. Once∇2ψ1 is solved, the stream function for the top atmospheric layer is determined by a Poisson
equation. The stream function for the bottom layer can be found by plugging the obtained value forψ1 into (21), (22)
and solving the equations forψ2. The potential vorticity functionsqi are evolved over the time by a numerical advec-
tion procedure which models the conservation equations (20). The advection procedure uses linear time interpolation
for the speed fields to compute the departure grid points and bicubic spatial interpolation to define potential vorticity
values for those points. For more details of the implementation, refer to [35].

5.2.2 Experiment and Results

We run the QG model with20 × 40 grid in each layer, and the dimension of the state vector is thus 1600. For
generating data, we run the forward model for 50 days with 1 hour time discretization using layer depthsD1 = 6000
andD2 = 4000. Data is generated at every 6th step (assimilation step is thus 6 hours) by adding random noise for 100
randomly chosen grid points with standard deviationσ = 2.5 × 10−3. For the data assimilation, bias is introduced
to the forward model by using wrong layer depths,D̃1 = 5500 andD̃2 = 4500. The model error covariance used
was Q = 0.2I. In the RTO optimizations, we applied the limited-memory BFGS optimizer [36]. The quadratic
optimizations converged fast in this case; on average, only around 10 L-BFGS iterations were required per sample,
which indicates that the approach can be feasible for large-scale problems.

In Fig. 5 we compare the RMS errors of EnKF and RTO-EnKF with different ensemble sizes. For the RTO-EnKF,
the smallest ensemble size with which the filter converges and produces reasonable results is roughlyN = 50. For the
standard EnKF without localization, the filter fails to converge with ensemble sizesN ≤ 200. With a larger ensemble
size,N = 400, both methods perform in a comparable way. For small ensemble sizes, RTO-EnKF is clearly better:
for instance, RTO-EnKF withN = 50 performs roughly equally well as EnKF withN = 300, and the RTO-EnKF
performance withN = 100 is similar to EnKF performance withN = 400. The results are similar to what was
observed with the small-scale Lorenz ’96 model, but the difference is even more dramatic. In this larger scale case, the
problem of spurious correlations in EnKF is especially emphasized, and a covariance localization technique is needed
to get EnKF working with small ensemble sizes.

We run one more experiment, where we study the effect of localization. As in the Lorenz ’96 case, we apply the
fifth order piecewise rational function of [19] as the tapering matrix. We choose the cutoff length experimentally for
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FIG. 5: Comparison of relative error of filter estimates in the QG model for EKF, EnKF withN = 300 andN = 400
and RTO-EnKF withN = 50, N = 100 andN = 200.

both methods so that a good filter performance is obtained. We observed that the optimally working cutoff length
was different for each method; for EnKF, a smaller value gave the best performance. For RTO-EnKF, the same value
did not work at all (filter diverged), and the cut-off length had to be set to a higher value to see any benefit from
localization.

We compare the filter accuracy with small ensemble sizes,N = 25 andN = 50. The results are shown in Fig. 6.
Again, localization significantly improves filter performance for EnKF. ForN = 25, the localized version of EnKF
yields slightly better results than RTO-EnKF run without any localization. ForN = 50, however, the situation is the
opposite: RTO-EnKF without localization is slightly more accurate than EnKF with localization. The results show that
localization is less crucial in RTO-EnKF, and suggest that RTO-EnKF can work well in high-dimensional problems
with small ensemble sizes without any localization applied. Note that with such small ensemble sizes, the standard
EnKF without localization does not converge.

As seen from Fig. 6, the RTO-EnKF results can also be improved by including localization with a suitably chosen
cutoff length; with bothN = 25 andN = 50, the localized version of RTO-EnKF is more accurate than EnKF.
However, the cutoff length needed here to obtain significant performance gains is rather large, and the forecast co-
variance matrices in RTO-EnKF are not very sparse, which means that the computationally efficient way to evaluate
the cost function discussed in Section 4 and Eq. (15) is not applicable. However, as discussed earlier, relatively good
performance can be obtained with RTO-EnKF without applying any localization at all.

6. CONCLUSIONS

In this paper, we present a way to apply optimization-based sampling in ensemble Kalman filtering. In the proposed
method, a randomize then optimize (RTO) procedure is applied, where new ensemble members are generated by
repeatedly solving an optimization problem with randomly perturbed data and prior. If the observation model is linear,
the method yields independent samples from the Gaussian approximation to the posterior.
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FIG. 6: Comparison of RMS errors of RTO-EnKF with and without localization and EnKF with localization for
ensemble sizesN = 25 (top) andN = 50 (bottom).

In the proposed method, the prior (forecast) covariance matrix is computed as the sum of a model error covariance
matrix and a sample covariance matrix computed from the propagated samples. Including the model error covariance
matrix directly improves the conditioning of the forecast error covariance matrix, and diminishes the rank-deficiency
problems (spurious correlations) often encountered in ensemble filtering methods. The approach has other benefits as
well: for instance, including prior information of the state vector is straightforward due to the variational formulation
of the method. Computationally, the approach is more demanding than many existing ensemble approaches, since it
involves solving large-scale optimization problems, but the optimizations can be computed in parallel.

The proposed method, which we call RTO-EnKF, is compared to the standard ensemble Kalman filter (EnKF)
in a small scale Lorenz model and a larger scale two-layer quasi-geostrophic model. In both cases, the RTO-EnKF
performs better than EnKF, especially with small ensemble size when the rank-deficiency problems are pronounced.
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