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A recent article by Mohamad (2001) investigates exactly the
same convective boundary layer flow as an article by Rees and
Pop (2000), although it was impossible for the later author to
have known about the slightly earlier investigation.

The primary reason for this note is to emphasize differences
in the approaches taken by the respective authors and to
underscore an essential aspect of the numerical study of
convective boundary layer flows in porous media where
local thermal nonequilibrium is significant.

First, we mention that the flow is governed by only two
nondimensional parameters, F/ and y (Rees and Pop 2000),
rather than by three, II, X, and ¢ (Mohamad 2001). The
parameters are related according to the formula

H=T1/¢, yv=Ko¢/(1-9) )

where ¢ is the porosity in the notation of Mohamad
(2001). In fact, as pointed out in Rees and Pop (2000), it
is even possible to eliminate A from the equations, thereby
reducing the mathematical problem to one involving only
one parameter.

Second, we have found that the imposed far-field
boundary condition for the solid-phase temperature field
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in Mohamad (2001) can lead to inaccuracies, since the
detail of the evolution of the temperature field near the
leading edge is quite subtle. The literature is replete with
examples of boundary layer flows that evolve into a double-
layer structure at /arge distances from the leading edge,
examples of which include the studies of Rees and Bassom
(1996) and Rees (1997). Typically this means that an
asymptotic analysis is required to resolve an increasingly
thin near-wall layer as x becomes large, since the numeri-
cal analysis will become decreasingly able to resolve this
sublayer. When thermal nonequilibrium effects are
present, however, the solid phase temperature field has a
considerably greater thickness near the leading edge than
does the fluid phase, that is, 1 > 1 as opposed ton = 0(1),
where 1 is the usual similarity variable. In practice, then,
it is essential to carry out an asymptotic analysis for small
values of x in order to determine how the solid-phase
temperature field varies. '

The analysis of Rees and Pop (2000) gives the variation
of ¢ (the solid-phase temperature field, in their notation)
in the n > 1 region near the leading edge. This exponen-
tially decaying profile was then converted into an equiva-
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lent boundary condition in order to maintain a reasonably
sized computational domain. To be specific, ¢ satisfies
the equation,

¢” = Hyz(¢—-9) )

where primes denote derivatives with respect tom and 6 is
the fluid phase temperature field. The large-n boundary
condition used by Rees and Pop (2000) is

O+ hyz¢ =0 @)
whereas Mohamad (2001) uses

=0 4)

Equation (3) allows ¢ to exhibit exponential decay but
does not constrain ¢ to be zero at the edge of the computa-
tional domain.

In Figure 1 we display the results of applying the bound-
ary conditions given in (3) and (4) to the boundary layer
problem, and the effect of different sizes of computational
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domain is depicted. A nonuniform grid in the x direction
was used, and the surface rates of heat transfer for both
phases are plotted against & where & = /z . A uniform
grid of size 1 = 0.1 was chosen for illustrative purposes,
and we have used M, = 10, 20, 40, and 80 for cases
employing boundary condition (4), and 1, = 20 for bound-
ary condition (3). We have also used /=y =1 as represen-
tative values of these parameters.

It is clear from Figure 1 that the evolution of the
surface heat transfer of the fluid phase is hardly affected
by the value of 1M, when 1, =20 when using boundary
condition (4) for ¢. But the surface heat transfer of the
solid phase is strongly affected. The deviation from the
correct behavior is most evident at x = £ = 0, and this is
because the solid phase, whose temperature satisfies the
equation ¢~ = 0 there, has the solution

O=1-1/Mp. 5)

and therefore the surface rate of heat transfer is
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Figure 1.
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Evolution with &(= x"?) of the surface rate of heat transfer for both the fluid and solid phases (6° and ¢’

atm = 0, respectively). The four continuous curves correspond to solutions of the governing equations subject to the
boundary condition (4) for the following values of 1, :10, 20, 40, and 80. The dashed curve corresponds to the

boundary condition (3) and 1., = 20.
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¢'(n=0)=-1/M,,, (6)

This means that the numerical solution is highly depen-
dent on the size of the computational domain when using
boundary condition (4), although the distance in terms of
€ over which it deviates significantly from the correct
solution diminishes as 1, increases.

On the other hand, the employment of boundary con-
dition (3), which is shown as a dashed line for N, = 20,
gives rates of heat transfer that vary by at most 10~ from
the given curve when 1, is increased. Therefore boundary
condition (3) yields solutions that are essentially indepen-
dent of the size of the computational domain.

To conclude, it is necessary when considering local ther-
mal nonequilibrium in porous medium boundary layer flows
to undertake a detailed asymptotic analysis of the leading
edge region in order to obtain boundary conditions for the
solid-phase temperature field that are capable of describing
accurately its behavior outside the computational domain.
This technique has already been applied successfully in the
article by Rees and Pop (1999). We also note its use in
Rees and Vafai (1999), which deals with the Darcy-
Brinkman convection from a vertical surface.
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