ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 印刷: 0040-2508
ISSN オンライン: 1943-6009

巻:
巻 78, 2019 巻 77, 2018 巻 76, 2017 巻 75, 2016 巻 74, 2015 巻 73, 2014 巻 72, 2013 巻 71, 2012 巻 70, 2011 巻 69, 2010 巻 68, 2009 巻 67, 2008 巻 66, 2007 巻 65, 2006 巻 64, 2005 巻 63, 2005 巻 62, 2004 巻 61, 2004 巻 60, 2003 巻 59, 2003 巻 58, 2002 巻 57, 2002 巻 56, 2001 巻 55, 2001 巻 54, 2000 巻 53, 1999 巻 52, 1998 巻 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v72.i6.30
pages 485-494

DIGITAL IMAGE RECONSTRUCTION BY USING ROW PRE−DISTORTION AND THIRD−ORDER MOMENT FUNCTION ESTIMATION

J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
A. V. Totsky
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine

要約

The problem of search the optimal parameters of additive and multiplicative pre-distortion functions that are used for reconstruction the digital images corrupted by jitter and mixture of the additive Gaussian and impulsive noise is considered. The results of processing different kinds of test images are represented by using row-by-row image restoration with third-order moment function estimation. Performance of proposed techniques and image reconstruction accuracy are studied by computer simulations. It is shown that the suggested techniques can effectively remove heavy jitter distortions in the background of the additive Gaussian and impulsive noise.

参考

  1. Lan Du, Hongway Liu, Zheng Bao, and Mengdao Xing, Radar HRRP target recognition based on higher order spectra.

  2. Bartelt, H., Lohmann, A.W., and Wirnitzer, B., Phase and amplitude recovery from bispectra.

  3. Nakamura, M., Waveform estimation from noisy signals with variable signal delay using bispectrum averaging.

  4. Nikias, C.L. and Raghuveer, M.R., Bispectral estimation: A digital signal processing framework.

  5. Sundaramoorthy, G., Raghuveer, M.R., and Dianat S.A., Bispectral reconstruction of signals in noise: Amplitude reconstruction issues.

  6. Diant, S.A. and Raghuveer, M.R., Fast algorithms for phase and magnitude reconstruction from bispectra.

  7. Petropulu, A.P. and Nikias, C.L., Signal reconstruction from the phase of the bispectrum.

  8. Petropulu, A.P. and Pozidis, H., Phase reconstruction from bispectrum slices.

  9. Totskiy, A.V., Reconstruction of the images distorted by jitter and additive Gaussian noise.

  10. Totskiy, A.V., Image reconstruction technique by using row pre-distortion and bispectral density estimation.


Articles with similar content:

Modified Vector Sigma-Filter for the Processing of Multichannel Radar Images and Increasing Reliability of its Interpretation
Telecommunications and Radio Engineering, Vol.58, 2002, issue 1&2
G. P. Kulemin, A. A. Zelensky, A. A. Kurekin, O. V. Tsymbal
Signal Reconstruction by Using Normalized Bispectrum Estimates in Noise
Telecommunications and Radio Engineering, Vol.67, 2008, issue 5
P. A. Molchanov
AN APPROACH TO PREDICTION OF SIGNAL-DEPENDENT NOISE REMOVAL EFFICIENCY BY DCT-BASED FILTER
Telecommunications and Radio Engineering, Vol.73, 2014, issue 18
Benoit Vozel, Kacem Chehdi, A. Naumenko, A. Rubel, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, S. S. Krivenko
Detection of a Pulsed Signal Against a Non-Gaussian Noise Background
Telecommunications and Radio Engineering, Vol.55, 2001, issue 1
S. S. Martynenko
ESTIMATION OF MATCHING OF OPTIMAL DYNAMIC SPECTRAL FILTRATION IN ELECTRO-OPTICAL SYSTEMS OF TARGET DETECTION
Telecommunications and Radio Engineering, Vol.77, 2018, issue 10
L. F. Kupchenko, A. S. Rybiak, О. А. Gurin