ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 印刷: 0040-2508
ISSN オンライン: 1943-6009

巻:
巻 78, 2019 巻 77, 2018 巻 76, 2017 巻 75, 2016 巻 74, 2015 巻 73, 2014 巻 72, 2013 巻 71, 2012 巻 70, 2011 巻 69, 2010 巻 68, 2009 巻 67, 2008 巻 66, 2007 巻 65, 2006 巻 64, 2005 巻 63, 2005 巻 62, 2004 巻 61, 2004 巻 60, 2003 巻 59, 2003 巻 58, 2002 巻 57, 2002 巻 56, 2001 巻 55, 2001 巻 54, 2000 巻 53, 1999 巻 52, 1998 巻 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v77.i9.30
pages 769-786

DENOISING OF MULTICHANNEL IMAGES WITH NONLINEAR TRANSFORMATION OF REFERENCE IMAGE

S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

要約

It has been demonstrated recently that efficiency of filtering a noisy component image of a multichannel image can be sufficiently improved under condition that the multichannel image has almost noise-free component image(s) that possess high correlated with the noisy component image used as reference. High correlation and practical absence of the noise are only pre-requisites for efficient filtering of the noisy image using reference. Other criteria of similarity than cross-correlation factor are important. In this paper we show how it is possible to make the reference image very "close" to the noisy one by exploiting nonlinear transformation. Moreover, it is demonstrated that the proposed approach can be useful for denoising images corrupted by signal-dependent noise which is often the case for multichannel remote sensing data.


Articles with similar content:

DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
PRE-REQUISITES FOR SMART LOSSY COMPRESSION OF NOISY REMOTE SENSING IMAGES
Telecommunications and Radio Engineering, Vol.77, 2018, issue 3
Benoit Vozel, V. V. Lukin, S. K. Abramov, A. Zemliachenko, Karen O. Egiazarian, M. Alhihi
DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES
Telecommunications and Radio Engineering, Vol.76, 2017, issue 19
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
Removal of Mixed Poisson and Impulse Noise in 1-D Signals by Non-Adaptive and Adaptive Nonlinear Filters
Telecommunications and Radio Engineering, Vol.67, 2008, issue 14
A. N. Besedin, S. K. Abramov, S. Peltonen, P. Ye. Yeltsov
BLIND FEATURE SELECTION AND EXTRACTION IN A 3D IMAGE CUBE
Journal of Flow Visualization and Image Processing, Vol.19, 2012, issue 2
Muhammad Ahmad , Ihsan Ul Haq, Syungyoung Lee, Qaisar Mushtaq