ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 印刷: 0040-2508
ISSN オンライン: 1943-6009

巻:
巻 78, 2019 巻 77, 2018 巻 76, 2017 巻 75, 2016 巻 74, 2015 巻 73, 2014 巻 72, 2013 巻 71, 2012 巻 70, 2011 巻 69, 2010 巻 68, 2009 巻 67, 2008 巻 66, 2007 巻 65, 2006 巻 64, 2005 巻 63, 2005 巻 62, 2004 巻 61, 2004 巻 60, 2003 巻 59, 2003 巻 58, 2002 巻 57, 2002 巻 56, 2001 巻 55, 2001 巻 54, 2000 巻 53, 1999 巻 52, 1998 巻 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v76.i19.40
pages 1719-1748

DENOISING OF MULTICHANNEL IMAGES WITH REFERENCES

V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
V. V. Abramova
National Aerospace University (Kharkiv Aviation Institute), 17, Chkalov St., Kharkiv, 61070, Ukraine
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

要約

In this paper, we study a problem of filtering noisy component image of a multichannel image, under assumption that the multichannel data contain almost noise-free component image(s) highly correlated with the noisy one. Our proposed denoising approach is based on three-dimensional (3D) representation of the noisy and reference images. One dimensional discrete cosine transform (DCT) is applied to decorrelate images and then the obtained data are processed by the BM3D filter in the component-wise manner. Our approach has another option where the modified BM3D filter is applied. Performances of these methods are analyzed for ten test images, several values of noise variance and different quality metrics. It is demonstrated that performance depends on a choice of the reference images and the way they are pre-processed. In the case of proper pre-processing, improvements of the metrics PSNR and PSN-RHVS-M can reach up to 3-7 dB compared to the component-wise BM3D filtering of the noisy component image. Examples of processing real-life hyperspectral images are presented with the recommendations on how to choose and pre-process reference images. High efficiency and relative simplicity of the proposed approach is demonstrated.


Articles with similar content:

DCT-BASED DENOISING IN MULTICHANNEL IMAGING WITH REFERENCE
Telecommunications and Radio Engineering, Vol.75, 2016, issue 13
V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, V. V. Abramova
AN AUTOMATIC APPROACH TO LOSSY COMPRESSION OF AVIRIS HYPERSPECTRAL DATA
Telecommunications and Radio Engineering, Vol.69, 2010, issue 6
M. S. Zriakhov, N. N. Ponomarenko, A. Kaarna
AN APPROACH TO PREDICTION OF SIGNAL-DEPENDENT NOISE REMOVAL EFFICIENCY BY DCT-BASED FILTER
Telecommunications and Radio Engineering, Vol.73, 2014, issue 18
Benoit Vozel, Kacem Chehdi, A. Naumenko, A. Rubel, V. V. Lukin, S. K. Abramov, J. T. Astola, Karen O. Egiazarian, S. S. Krivenko
Optimal Signal Detection and Tracking of Detected Signals
Journal of Automation and Information Sciences, Vol.32, 2000, issue 11
Nataliya G. Vovkodav, Leonard N. Shlepakov
UNCERTAINTIES ASSESSMENT IN GLOBAL SENSITIVITY INDICES ESTIMATION FROM METAMODELS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 1
Maelle Nodet, Alexandre Janon, Clementine Prieur