ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Telecommunications and Radio Engineering
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 印刷: 0040-2508
ISSN オンライン: 1943-6009

巻:
巻 78, 2019 巻 77, 2018 巻 76, 2017 巻 75, 2016 巻 74, 2015 巻 73, 2014 巻 72, 2013 巻 71, 2012 巻 70, 2011 巻 69, 2010 巻 68, 2009 巻 67, 2008 巻 66, 2007 巻 65, 2006 巻 64, 2005 巻 63, 2005 巻 62, 2004 巻 61, 2004 巻 60, 2003 巻 59, 2003 巻 58, 2002 巻 57, 2002 巻 56, 2001 巻 55, 2001 巻 54, 2000 巻 53, 1999 巻 52, 1998 巻 51, 1997

Telecommunications and Radio Engineering

DOI: 10.1615/TelecomRadEng.v73.i13.10
pages 1125-1139

APPROACHES TO AUTOMATIC DATA PROCESSING IN HYPERSPECTRAL REMOTE SENSING

V. V. Lukin
National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
S. K. Abramov
Department of Transmitters, Receivers and Signal Processing, National Aerospace University (Kharkiv Aviation Institute), 17 Chkalov St., Kharkiv, 61070, Ukraine
N. N. Ponomarenko
National Aerospace University, Kharkiv, Ukraine
S. S. Krivenko
Dept 504, National Aerospace University, 17 Chkalova Str., 61070, Kharkiv, Ukraine
M. L. Uss
National Aerospace University (Kharkov Aviation Institute), 17, Chkalov St., Kharkov, 61070
Benoit Vozel
University of Rennes 1, Enssat, Lannion, 22300, France
Kacem Chehdi
University of Rennes I, 6, Rue de Kerampont, 22 305 Lannion cedex, BP 80518, France
Karen O. Egiazarian
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland
J. T. Astola
Tampere University of Technology, Signal Processing Laboratory, P. O. Box 553, FIN-33101, Tampere, Finland

要約

In hyperspectral imaging, one has to deal with huge amount of data at different stages of their processing both on-board and on-land. Due to this, high degree of automation is required. The paper deals with considering new approaches and trends in design and use of methods and algorithms for automatic processing of hyperspectral data. Blind estimation of noise parameters is the first step. Then the obtained estimates are to be used at stages of image filtering and compression. Several strategies for doing this are considered. Their advantages and drawbacks are discussed. Examples of real-life data processing are presented.


Articles with similar content:

Acceleration of a Fractal Algorithm in the Systems of Image Compression and Transmission
Telecommunications and Radio Engineering, Vol.68, 2009, issue 12
E. S. Pereguda
Systems for Video Detection and Tracking of Mobile Objects
Telecommunications and Radio Engineering, Vol.63, 2005, issue 2-6
N. A. Obukhova, B. S. Timofeev
IMAGE SMOOTHING BASED ON SOLUTION OF THE BOUNDARY-VALUE PROBLEM
Telecommunications and Radio Engineering, Vol.71, 2012, issue 16
I. A. Volkov, Yu. F. Boltov
SMART LOSSY COMPRESSION OF IMAGES BASED ON DISTORTION PREDICTION
Telecommunications and Radio Engineering, Vol.77, 2018, issue 17
O. Krylova, E. Bataeva, V. V. Lukin, S. S. Krivenko
ANALYSIS OF MODERN REQUIREMENTS TO NEW GENERATION OF CRYPTOGRAPHIC PRIMITIVES
Telecommunications and Radio Engineering, Vol.75, 2016, issue 7
A. V. Samoilova, V. M. Kartashov, E. V. Kotukh, D. P. Tsapko, O. G. Khalimov