ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Environmental Pathology, Toxicology and Oncology
インパクトファクター: 1.241 5年インパクトファクター: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN 印刷: 0731-8898
ISSN オンライン: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.2016015467
pages 171-183

Reversal of Lead-Induced Acute Toxicity by Lipoic Acid with Nutritional Supplements in Male Wistar Rats

Sangeeta Shukla
School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
Yamini Sharma
School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
Sadhana Shrivastava
Reproductive Biology and Toxicology Labora¬tory, UNESCO Satellite Center of Trace Element Research, School of Studies in Zoology, Jiwaji University, Gwalior 474011, India

要約

Lead (Pb) is a pleiotropic toxicant. The potential role of oxidative stress injury that is associated with Pb poisoning suggests that antioxidants may enhance the efficacy of treatment designed to mitigate Pb-induced toxicity. The aim of this study is to investigate the comparative ameliorative potential of lipoic acid (LA) alone or in combination with calcium (Ca) and zinc (Zn). Pb acetate (50 mg/kg, intraperitoneally) was administered for 3 d. After 24 h of the last toxicant dose, LA (100 mg/kg, orally [po]) alone or in conjuction with Ca (50 mg/kg, po) and Zn (10 mg/kg, po) was administered for 3 d. Significant alterations in the concentration of urea, uric acid, triglycerides, cholesterol, aspartate amino transferase, alanine amino transferase, lipid peroxidation, and reduced glutathione as well as alterations in enzyme activity of δ-aminolevulinic acid (ALA) dehydratase were observed following acute Pb exposure. These findings were also supported by elevated mean DNA damage and Pb body burden in blood and soft tissues compared to controls (p ≤ 0.05). Three d posttreatment with LA along with Zn and Ca could significantly restore the biochemical parameters and Pb body burden to near-normal status through antioxidant activity or by preventing bioaccumulation of Pb within the blood and tissues of experimental rats.


Articles with similar content:

Toxic Effects of Lead Exposure in Rats: Involvement of Oxidative Stress, Genotoxic Effect, and the Beneficial Role of N-Acetylcysteine Supplemented with Selenium
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 1
Samta Sharma, Bhanu Pratap Singh Raghuvanshi, Sangeeta Shukla
Reversal of Methylmercury-Induced Oxidative Stress, Lipid Peroxidation, and DNA Damage by the Treatment of N-Acetyl Cysteine: A Protective Approach
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 2
Mittal Deepak Kumar, Deepmala Joshi, Shukla Sangeeta, Shakya Arvind Kumar
Reversal of Lead-Induced Toxicity Due to the Effect of Antioxidants
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 2
Sadhana Shrivastava, Samta Sharma, Sangeeta Shukla
Aqueous Extract of Pecan Nut Shell (Carya illinoensis [Wangenh.] K. Koch) Exerts Protection Against Oxidative Damage Induced by Cyclophosphamide in Rat Testis
Journal of Environmental Pathology, Toxicology and Oncology, Vol.32, 2013, issue 4
Veronica T. Dias, Valdemiro A. da Silva Junior, M.E. Burger, Geisa S. Dolci, Katiane Roversi, Camila S. Pase, Luiz André de Lima, Caren T. D. Antoniazzi, Leandro M. de Carvalho, Fernanda Lima, Hecson J. Segat, Patricia Reckziegel, Raquel C. S. Barcelos, N. Boufleur, Dalila Benvegnu, Fabiola Trevizol
Dose-Dependent Effects of Ethanol on Lead-Induced Oxidative Stress in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.31, 2012, issue 1
Swaran Flora, Pratibha Gautam, Nidhi Dwivedi