ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Environmental Pathology, Toxicology and Oncology
インパクトファクター: 1.241 5年インパクトファクター: 1.349 SJR: 0.519 SNIP: 0.613 CiteScore™: 1.61

ISSN 印刷: 0731-8898
ISSN オンライン: 2162-6537

Journal of Environmental Pathology, Toxicology and Oncology

DOI: 10.1615/JEnvironPatholToxicolOncol.2018024654
pages 331-339

Studying the in Silico Effect of Ellagic Acid on HIF-2α to Improve Efficacy of Anticancer Therapy

Vidhula Ahire
LARIA, iRCM, François Jacob Institute, DRF-CEA, Caen, France; UMR6252 CIMAP, CEA - CNRS– ENSICAEN, Université de Caen Normandie, Caen, France
Devashish Das
Durga Femto Technologies and Research, Bangalore, India
Shashank Arora
Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
Anurag Kumar
Durga Femto Technologies and Research, Bangalore, India
Guruprasad Ramakrishna
Durga Femto Technologies and Research, Bangalore, India
Kaushala Prasad Mishra
Department of Life Sciences, University of Mumbai, Mumbai, India; Nehru Gram Bharati University, Allahabad, UP, India; Foundation for Education and Research, India and BM International Research Centre, Mumbai, India

要約

The hypoxic tumor microenvironment is one of the major causes of the enhanced chemoresistant and radioresistant behavior of cancer cells. Therefore, the hypoxia-induced factor (HIF) pathway can be endorsed, for not only the malignant phenotype of the cells, but also its metastatic potential. Many drugs targeting the HIF pathways have failed in the clinical setting to demonstrate therapeutic efficacy. Such failures occur due to lack of specificity or redundancy in the complexity of tumor signaling/metabolism that can overcome the inhibitory effects. Another important factor is the letdown of the compound that can be accredited to lack of patient selection in the trials. Although many clinical trials have evaluated the efficacy of anticancer therapeutics and examined their effects on HIF levels, patients were not selected based on their HIF expression levels. If patients do not have elevated levels of HIF, then the therapeutics that target the HIF pathway may be less effective. In the present work, we have targeted HIF-2α of the HIF pathway. Ellagic acid (EA), a well-known anticancer compound and radiosensitizer, is used to inhibit the activity of HIF-2α. Our results show a very unique binding of EA with HIF-2α. Such new agents should be used in combination therapy and will hopefully overcome the resistance that may develop during initial treatment if the patient is identified to have enhanced expression of HIF-2α. Molecular dynamics studies followed solvation free energy calculations (molecular mechanics Poisson-Boltzmann surface area) for understanding the binding stability and per residue contribution. Our in silico data look promising and EA should be studied more in in vitro and in vivo for further analysis of its efficacy.


Articles with similar content:

YY1 PcG function as a Potential cancer Therapeutic Target
Forum on Immunopathological Diseases and Therapeutics, Vol.1, 2010, issue 1-2
Frank Wilkinson, Michael L. Atchison, Antionette Knox, Omozusi Andrews, Arindam Basu, Suchita Hodawadekar, Xuan Pan
Framing the "Right to Withdraw" in the Use of Biospecimens for iPSC Research
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.4, 2013, issue 1
Justin Lowenthal, Sara Chandros Hull
Therapeutic YY1 Inhibitors in Cancer: ALL in ONE
Critical Reviews™ in Oncogenesis, Vol.22, 2017, issue 1-2
Benjamin Bonavida
Dual Role of p21 in the Progression of Cancer and Its Treatment
Critical Reviews™ in Eukaryotic Gene Expression, Vol.26, 2016, issue 1
Amna Parveen, Whang Wan Kyunn, Muhammad Sajid Hamid Akash, Kanwal Rehman
Hepatoma Cell Growth Inhibition by Inducing Apoptosis with Polysaccharide Isolated from Turkey Tail Medicinal Mushroom, Trametes versicolor (L.: Fr.) Lloyd (Aphyllophoromycetideae)
International Journal of Medicinal Mushrooms, Vol.12, 2010, issue 3
Xinzhong Cai, Xin Zhou, Lifen Tian, Yan Pi, Shouyi Qiao, Juan Lin