ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN 印刷: 2150-766X
ISSN オンライン: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v3.i1-6.380
pages 365-378

REAL-TIME X-RAY RADIOGRAPHY STUDY OF LIQUID JET BREAKUP FROM ROCKET ENGINE COAXIAL INJECTORS

R. D. Woodward
Propulsion Engineering Research Center and Department of Mechanical Engineering, The Pennsylvania State University University Park, PA 16802
R. L. Burch
Propulsion Engineering Research Center and Department of Mechanical Engineering, The Pennsylvania State University University Park, PA 16802
Fan Bill Cheung
Department of Mechanical & Nuclear Engineering, Pennsylvania State University, State College, PA, 16802

要約

The investigation of liquid jet breakup and spray development is critical to the understanding of combustion phenomena in liquid-propellant rocket engines. A great deal of work has been done to characterize low-speed liquid jet breakup and dilute sprays, but atomizing jets and dense sprays have yielded few quantitative measurements due to their optical opacity. The present work focuses on a characteristic of the primary breakup process of round liquid jets, namely the length of the intact liquid core. The specific application considered is that of shear-coaxial-type rocket engine injectors. Real-time x-ray radiography, capable of imaging through the dense two-phase region surrounding the liquid core, is used to make the measurements. The intact liquid-core length data have been obtained and interpreted to illustrate the effects of chamber pressure (gas density), injected-gas and liquid velocities, and cavitation. The results show clearly that the effect of cavitation must be considered at low chamber pressures since it can be the dominant breakup mechanism. A correlation of intact core length in terms of gas-to-liquid density ratio, liquid jet Reynolds number, and Weber number is suggested. The gas-to-liquid density ratio appears to be the key parameter for aerodynamic shear breakup in this study.


Articles with similar content:

CORRELATION OF INTACT-LIQUID-CORE LENGTH FOR COAXIAL INJECTORS
ICLASS 94
Proceedings of the Sixth International Conference on Liquid Atomization and Spray Systems, Vol.0, 1994, issue
Fan Bill Cheung, R. D. Woodward, R. L. Burch, Kenneth K. Kuo
VIEWS ON THE STRUCTURE OF TRANSIENT DIESEL SPRAYS
Atomization and Sprays, Vol.10, 2000, issue 3-5
Gregory J. Smallwood, Omer L. Gulder
MEASUREMENT OF BREAKUP LENGTH OF CYLINDRICAL LIQUID JETS. APPLICATION TO LOW-PRESSURE CAR INJECTOR
Atomization and Sprays, Vol.11, 2001, issue 3
Christophe Dumouchel
DEVELOPMENT AND VALIDATION OF A CASCADE ATOMIZATION AND DROP BREAKUP MODEL FOR HIGH-VELOCITY DENSE SPRAYS
Atomization and Sprays, Vol.14, 2004, issue 3
Franz X. Tanner
Dynamic Primary Atomization Characteristics in an Airblast Atomizer, High Pressure Conditions
Atomization and Sprays, Vol.21, 2011, issue 1
P. Berthoumieu, G. Lavergne, Vital Gutierrez Fernandez