ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 印刷: 2150-766X
ISSN オンライン: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i2.20
pages 153-169

MODIFIED BURNING RATE SPECTRUM & COMBUSTION MECHANISM OFTETRA-OLGAP

Sumito Togo
Institute of Space & Astronautical Science/Japan Aeropace Exploration, Agency, JAPAN
Kiyokazu Kobayashi
Institute of Space & Astronautical Science/Japan Aeropace Exploration Agency (JAXA), Japan
Toru Shimada
ISAS, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
Yasushi Niimi
NOF Corporation, JAPAN
Yoshio Seike
NOF Corporation, JAPAN
Makihito Nishioka
University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
Keiichi Hori
Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-Ku, Sagamihara, Kanagawa 252-5210, Japan

要約

Attempts were made to extend the burning rate spectrum of glycidyl azide polymer (GAP) towards both upper and lower sides. Nano-sized aluminum and carbon nanofibres (CNF) were used to enhance the burning rate of GAP, and polyethylene glycol (PEG) was used to lower the burning rate. PEG addition is very effective and burning rate is lowered below 4mm/s even at 10MPa. Mechanical properties were also evaluated and shown to be good enough for practical use. Static firing tests of GAP as a gas generator for hybrid rockets were successfully performed in small size rocket motors, and the detail of them are presented and discussed. Combustion mechanism of cured tetra-ol GAP based upon the Beckstead model was developed using the results of fine thermocouple temperature measurement. Some modifications are made to adjust experimental results.


Articles with similar content:

COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada
POLYNIMMO, A CANDIDATE BINDER FOR SOLID FUEL GAS GENERATOR PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
A. V. Cunliffe, P. J. Honey, D. A. Tod, D. W. Anderson, G. A. Spinks
MANUFACTURING AND TESTING OF A DUAL-PROPELLANT NOZZLELESS BOOSTER TECHNOLOGY DEMONSTRATOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 6
Martin Hubinger, Gideon J. van Zyl
GLYCIDYL AZIDE POLYMER−COMBUSTION MECHANISM AND ITS APPLICATION TO HYBRID ROCKET MOTORS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 4
Makihito Nishioka, Keiichi Hori
COMBUSTION MECHANISM OF TETRA-OL GLYCIDYL AZIDE POLYMER AND ITS APPLICATION TO HYBRID ROCKETS
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 6
Nobuyuki Tsuboi, Kiyokazu Kobayashi, Makihito Nishioka, Keiichi Hori, Yoshio Seike, Yutaka Wada, Toru Shimada, Katsuya Hasegawa