ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.142 SNIP: 0.16 CiteScore™: 0.29

ISSN 印刷: 2150-766X
ISSN オンライン: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i3.50
pages 249-266

COMBUSTION OF ALANE-BASED SOLID FUELS

Gregory Young
Research and Development Department, Naval Surface Warfare Center − Indian Head Division, Indian Head, Maryland 20640, USA
Grant A. Risha
The Pennsylvania State University-Altoona, Altoona, Pennsylvania 16601, USA
Amber G. Miller
Pennsylvania State University, Altoona College, Division of Business and Engineering, Altoona, Pennsylvania 16601, USA
Russell A. Glass
Pennsylvania State University, Altoona College, Division of Business and Engineering, Altoona, Pennsylvania 16601, USA
Terrence L. Connell, Jr.
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Richard A. Yetter
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

要約

In this study the combustion behavior of solid fuels loaded with micron-sized aluminum, nanoaluminum, and aluminum hydride with loadings of 10, 20, and 40 mass % are compared directly using pure oxygen as the oxidizer. An opposed flow burner was used to screen the various fuels at various oxidizer flow rates. Regression rates were gathered over oxidizer impingement velocities ranging from approximately 40 to 160 cm/s (strain rates of 80-320 s−1). Fuels loaded with aluminum hydride were found to have regression rates comparable to or better than that of the baseline hydroxyl terminated polybutadiene (HTPB) fuel. In addition, the regression rate increased with increasing aluminum hydride content. Conversely, the regression rates of fuels loaded with micron-sized aluminum were found to decrease with increasing aluminum content. Emission spectroscopy revealed that under most conditions the aluminum in the fuels loaded with micron-sized aluminum did not ignite within the immediate vicinity of the solid fuel sample. Temperature measurements determined from thermal emission support this conclusion as well. Finally, a lab-scale hybrid rocket motor was used to compare the combustion performance of the fuels relative to each other. It was found for the same oxidizer mass flow rate, pressure and thrust were highest for alanized fuels. Data included were thrust, pressure, regression rate, and mass burning rate.


Articles with similar content:

SURFACE HEAT RELEASE OF HTPB-BASED FUELS IN OXYGEN RICH ENVIRONMENTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
H. Stephen Jones, Grant A. Risha, George C. Harting, Joseph P. Arves, Arie Peretz, Donald E. Koch
POLYNIMMO, A CANDIDATE BINDER FOR SOLID FUEL GAS GENERATOR PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
A. V. Cunliffe, P. J. Honey, D. A. Tod, D. W. Anderson, G. A. Spinks
GLYCIDYL AZIDE POLYMER AND POLYETHYLENE GLYCOL MIXTURES AS HYBRID ROCKET FUELS
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 2
Koji Fujisato, Yuya Nomura, Motoyasu Kimura, Takeshi Yagishita, Makihito Nishioka, Keiichi Hori, Yutaka Wada
COMBUSTION OF GELLED RP-1 PROPELLANT WITH ALEX® PARTICLES IN GASEOUS OXYGEN ATOMIZED SPRAYS
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Frederick Tepper, J. W. Mordosky, George C. Harting, L. A. Kaledin, Baoqi Zhang
IGNITION AND COMBUSTION OF HYDROXYL-TERMINATED POLYBUTADIENE (HTPB)-BASED SOLID FUELS LOADED WITH INNOVATIVE MICROMETER-SIZED METALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 2
Giovanni Colombo, Jian-hua Yi, Luigi T. DeLuca, Ruiqi Shen, Christian Paravan, Feng-qi Zhao, Zhao Qin