ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 印刷: 2150-766X
ISSN オンライン: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i6.70
pages 775-791

GAP DISTANCE EFFECT ON BURNING RATE OF TWO OPPOSING JA2 PROPELLANT GRAINS

Peter J. Ferrara
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University University Park, PA 16802

要約

The combustion process of gun propellants packed in high loading density conditions can differ significantly from those burning individually in the same pressure and temperature environment. More specifically, burning rates and flame-spreading processes for a propellant charge are not only functions of pressure and initial temperature, but are also a function of the loading density. An experimental study has been conducted to investigate the influence of gap space between propellants on propellant regression rates. In the experimental setup, two opposing strands of JA2 gun propellant were burned in a double-ended windowed strand burner (DEWSB) with a novel control system. A series of tests was conducted for a pressure range from 0.69 to 3.45 MPa, and a gap distance ranged from 0.5 to 12 mm. Comparing regression rate data of JA2 propellant burned in the double-end configuration to that of a single strand, an increase in the regression rate of about 30% was observed for the pressure range tested. This increase occurred for a certain gap-width range, which was found to be a function of pressure. The enhancement of the burning rate is believed to be caused by the geometric confinement of the flame, which supplied a greater energy feedback to the burning propellant surface.


Articles with similar content:

COMBUSTION AND PERFORMANCE STUDIES OF GLYCIDYL AZIDE POLYMER AND ITS MIXTURES AS HYBRID ROCKET FUEL
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 3
Motoyasu Kimura, Hideo Nakayama, Akshay Garg, Po-Jul Chang, Keiichi Hori, Yutaka Wada
INVESTIGATION OF SOLID OXIDIZER AND GASEOUS FUEL COMBUSTION PERFORMANCE USING AN ELEVATED PRESSURE COUNTERFLOW EXPERIMENT FOR REVERSE HYBRID ROCKET ENGINE
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 6
Grant A. Risha, Terrence L. Connell, Jr., Reed H. Johansson, Gregory Young, Richard A. Yetter
IGNITION DELAY TIME MEASUREMENT OF A REDUCED SMOKE COMPOSITE SOLID PROPELLANT
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 2
Bora Yazici, Sertac Curdaneli, A. Ulas
EFFECT OF MAGNESIUM-COATED BORON PARTICLES ON BURNING CHARACTERISTICS OF SOLID FUELS IN HIGH-SPEED CROSSFLOWS
International Journal of Energetic Materials and Chemical Propulsion, Vol.2, 1993, issue 1-6
Vigor Yang, K. K. Pace, T. A. Jarymowycz
COMBUSTION BEHAVIOUR INVESTIGATION OF SOLID FUELS USING A MICRO-SIZED HYBRID ROCKET MOTOR
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 3
Luciano Galfetti, Paolo Grassi, Christian Paravan, Luigi Pietro Maria Colombo, Viviana Luoni