ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
International Journal of Energetic Materials and Chemical Propulsion
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 印刷: 2150-766X
ISSN オンライン: 2150-7678

International Journal of Energetic Materials and Chemical Propulsion

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v9.i2.30
pages 147-192

COMBUSTION OF ENERGETIC MATERIALS GOVERNED BY REACTIONS IN THE CONDENSED PHASE

Valery P. Sinditskii
Department of Chemical Engineering, Mendeleev University of Chemical Technology, Moscow, 125047, Russia
Viacheslav Yu. Egorshev
Department of Chemical Engineering, Mendeleev University of Chemical Technology, 9 Miusskaya Sq., 125047, Moscow, Russia
Valery V. Serushkin
Department of Chemical Engineering, Mendeleev University of Chemical Technology, Moscow, 125047, Russia
Anton I. Levshenkov
Department of Chemical Engineering, Mendeleev University of Chemical Technology
Maxim V. Berezin
Department of Chemical Engineering, Mendeleev University of Chemical Technology
Sergey A. Filatov
Department of Chemical Engineering, Mendeleev University of Chemical Technology, Moscow, 125047, Russia

要約

Combustion of energetic materials (EMs) with the leading reaction in the condensed phase is considered. It is assumed that the leading role belongs to the condensed phase not only when the heat flux from the gas to the burning surface is negligibly small, but also in the case of a substantial heat flux, which is consumed for evaporation of unreacted substance. Based on numerous thermocouple-aided experimental studies on combustion of different EMs, it has been shown that the condensed phase can be heated up to its maximum temperature−boiling point−or, in the case of onium salts, dissociation temperature. A microscopic equilibrium at the surface between the boiling substance and vapor rather than a macroscopic one has been supposed to exist that is responsible for the observed surface temperatures. Combustion of AP, ADN, HMX, RDX, and CL-20 is considered here, and resulting kinetic parameters of the leading reactions have been derived from experimental data on the burning rates and surface temperatures, provided burning of these materials follow the condensed-phase combustion model. Using kinetic parameters of the leading reaction and the dependence of the surface temperature on pressure, burning rates of EMs have been simulated in a wide interval of initial temperature and pressure.


Articles with similar content:

COMBUSTION MECHANISM OF ENERGETIC BINDERS WITH NITRAMINES
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 5
Valery V. Serushkin, Valery P. Sinditskii, Sergey A. Filatov, Anton N. Chernyi, Viacheslav Yu. Egorshev
FRESH LOOK ON THE COMBUSTION MODELING OF ENERGETIC MATERIALS WITH SURFACE EVAPORATION
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 1
Vladimir Zarko, Lev K. Gusachenko, A. D. Rychkov
MODELING OF TRANSIENT COMBUSTION REGIMES OF ENERGETIC MATERIALS WITH SURFACE EVAPORATION
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Vladimir Zarko, Lev K. Gusachenko, A. D. Rychkov
A PHENOMENOLOGICAL THEORY OF PROPELLANTS' IGNITION AND SUBSEQUENT UNSTEADY COMBUSTION IN HIGH PRESSURE CHAMBERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Igor G. Assovskiy
STUDY OF THE COMBUSTION MECHANISM OF AN-BASED PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.7, 2008, issue 2
Valery P. Sinditskii, Derek Tomazi, Viacheslav Yu. Egorshev