ライブラリ登録: Guest
International Journal of Energetic Materials and Chemical Propulsion

年間 6 号発行

ISSN 印刷: 2150-766X

ISSN オンライン: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

NANO- AND MICROMETER-SCALE ALUMINUM POWDER OXIDATION IN CARBON DIOXIDE

巻 6, 発行 1, 2007, pp. 59-74
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i1.50
Get accessGet access

要約

The thermal oxidation of fine aluminum (Al) powders in carbon dioxide (CO2) gas was investigated for the purpose of metal-based propulsion fuel development. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). The reactivities of Al powders with nanometer and micrometer-scale average particle sizes were compared. The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). It is found that nano- and micrometer-scale Al powders exhibited different calorimetric behavior; primarily oxidation occurred at a much lower temperature for nanopowders compared to micropowders. The mechanism of the oxide transformation and growth, particle deformations, and hollow oxide shells are discussed, along with the involvement of carbon in the reaction.

によって引用された
  1. Lee Sanghyup, Noh Kwanyoung, Lim Jihwan, Yoon Woongsup, Thermo-physical characteristics of nickel-coated aluminum powder as a function of particle size and oxidant, Chinese Journal of Mechanical Engineering, 29, 6, 2016. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain