ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Long-Term Effects of Medical Implants
SJR: 0.133 SNIP: 0.491 CiteScore™: 0.89

ISSN 印刷: 1050-6934
ISSN オンライン: 1940-4379

Journal of Long-Term Effects of Medical Implants

DOI: 10.1615/JLongTermEffMedImplants.2019031391
pages 113-124

Effect of Implant-Abutment Connection Type on Stress Distribution in Peri-Implant Bone and Abutment Micromovement: A Three-Dimensional Finite Element Analysis

Parviz Torkzaban
Dental Research Center, Department of Periodontics, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
Narges Ziaei
Department of Periodontics, Dental Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
Bahman Tootiaee
Dental Research Center, Research Institute of Dental Sciences, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Masoumeh Khoshhal
Department of Periodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
Fariborz Vafaee
Department of Prosthodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
Narges Panahandeh
Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

要約

This study assessed the effect of implant-abutment connection type on stress distribution in peri-implant bone and abutment micromovement using finite-element analysis (FEA). Dimensions of three implant-abutment designs were measured by a three-dimensional scanner and transferred to SOLIDWORKS. An elemental model was designed using ABAQUS. Each implant was placed in bone at the crestal level. A 100-N load was applied at a 45° angle relative to the longitudinal axis of the implant in the buccolingual direction from the palatal toward the buccal and coronal parts of the abutment. Shear stress, von Mises stress, and micromovement of the abutment relative to the fixture were analyzed. Data were reported qualitatively and quantitatively using ABAQUS. The von Mises stress in all three samples decreased from the crest toward the apical area and was distributed homogenously. Maximum stress concentration was at the most coronal part of the implant body in the midbuccal area. In cancellous and cortical bone, stress decreased from the crest toward the palate and was at its maximum at the midbuccal point in the bone crest. Stress in cortical bone was more homogenous and in cancellous bone was higher. Shear stress was higher in the buccal than in the palatal area, and at its maximum shear stress and equal in the mesiobuccal and distobuccal areas. Micromovement was 4.25 μm in an Astra implant, 5.42 μm in a Intra-Lock implant, and 6.63 μm in an SPI implant. The distribution of von Mises and shear stress was the same in bone around the three implant connection types; however, abutment micomovement differed.

参考

  1. Yamanishi YYS, Imazato S, Nakano T, Yatani H. Influences of implant neck design and implant-abutment joint type on peri-implant bone stress and abutment micromovement: three-dimensional finite element analysis. Dent Mater. 2012;28(11):1126-33. .

  2. Albrektsson T, Zarb G, Worthington P, Eriksson A. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Surg. 1986;1(1):11-25. .

  3. Oh T-J, Yoon J, Misch CE, Wang H-L. The causes of early implant bone loss: myth or science. J Periodontol. 2002;73(3):322-33. .

  4. Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res. 2007;18(4):465-70 .

  5. Becker W, Goldstein M, Becker BE, Sennerby L. Minimally invasive flapless implant surgery: a prospective multicenter study. Clin Implant Dentistry Related Res. 2005;7:s21-7. .

  6. Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16(1): 26-35. .

  7. King GN, Hermann JS, Schoolfield JD, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone levels in non-submerged dental implants: a radiographic study in the canine mandible. J Periodontol. 2002;73(10):1111-7. .

  8. Weng D, Nagata M, Bell M, de Melo L, Bosco AF. Influence of microgap location and configuration on peri-implant bone morphology in nonsubmerged implants: an experimental study in dogs. Int J Oral Maxillofac Implants. 2010;25(3):540-7. .

  9. Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15(1):60-7. .

  10. Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature. 2000;405(6787):704-6. .

  11. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol. 1998;24(2): 80-8. .

  12. Assif D, Marshak B, Horowitz A. Analysis of load transfer and stress distribution by an implant-supported fixed partial denture. J Prosth Dent. 1996;75(3):285-91. .

  13. Schrotenboer J, Tsao Y-P, Kinariwala V, Wang H-L. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol. 2008;79(11):2166-72. .

  14. Schrotenboer J, Tsao Y-P, Kinariwala V, Wang H-L. Effect of platform switching on implant crest bone stress: a finite element analysis. Implant Dent. 2009;18(3):260-9. .

  15. Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. J Periodontol. 2011;82(7):1061-70. .

  16. Chang C-L, Chen C-S, Hsu ML. Biomechanical effect of platform switching in implant dentistry: a three-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2010;25(2):295-304 .

  17. Hsu J-T, Fuh L-J, Lin D-J, Shen Y-W, Huang H-L. Bone strain and interfacial sliding analyses of platform switching and implant diameter on an immediately loaded implant: experimental and three-dimensional finite element analyses. J Periodontol. 2009;80(7):1125-32. .

  18. Park IS, Won SY, Bae TS, Song KY, Park CW, Eom TG, Jeong CM. Fatigue characteristics of five types of implant-abutment joint designs. Metals Mater Int. 2008;14(2): 133-8. .

  19. Harder S, Dimaczek B, Afil Y, Terheyden H, Freitag-Wolf S, Kern M. Molecular leakage at implant-abutment connection-in vitro investigation of tightness of internal conical implant-abutment connections against endotoxin penetration. Clin Oral Investig. 2010;14(4):427-32. .

  20. Tsuge T, Hagiwara Y, Matsumura H. Marginal fit and microgaps of implant-abutment interface with internal anti-rotation configuration. Dent Mater J. 2008;27(1):29-34. .

  21. Rack A, Rack T, Stiller M, Riesemeier H, Zabler S, Nelson K. In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants. J Synchrotron Radiat. 2010;17(2):289-94. .

  22. Proff P, Steinmetz I, Bayerlein T, Dietze S, Fanghanel J, Gedrange T. Bacterial colonisation of interior implant threads with and without sealing. Folia Morphol (Warsz). 2006;65(1):75-7. .

  23. Myshin HL, Wiens JP. Factors affecting soft tissue around dental implants: a review of the literature. J Prosthet Dent. 2005;94(5):440-4. .

  24. Faggion CM, Listl S, Tu Y-K. Assessment of endpoints in studies on peri-implantitis treatment-a systematic review. J Dent. 2010;38(6):443-50. .

  25. Steinebrunner L, Wolfart S, BoBmann K, Kern M. In vitro evaluation of bacterial leakage along the implant-abutment interface of different implant systems. Int J Oral Maxillofac Implants. 2005;20(6); 875-81. .

  26. Shareef N, Levine D. Effect of manufacturing tolerances on the micromotion at the Morse taper interface in modular hip implants using the finite element technique. Biomaterials. 1996;17(6):623-30. .

  27. Segundo R, Oshima H, da Silva I, Burnett L Jr, Mota EG, Silva LL. Stress distribution of an internal connection implant prostheses set: A 3D finite element analysis. Stomatologija. 2009;11(2):55-9. .

  28. Segundo R, Oshima H, Silva I, Junior L, Mota EG, Coelho L. Stress distribution on external hexagon implant system using 3D finite element analysis. Acta Odontologica Lati31. Broggini N, McManus L, Hermann J, Medina R, Oatesnoamericana. 2007;20(2):79-81. .

  29. Saidin S, Kadir MRA, Sulaiman E, Kasim NHA. Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012;40(6):467-74. .

  30. Patterson EA, Johns R. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants. 1992;7(1):26-33. .

  31. Broggini N, McManus L, Hermann J, Medina R, Oates T, Schenk R, Buser D, Mellonig J, Cochran D. Persistent acute inflammation at the implant-abutment interface. J Dent Res. 2003;82(3):232-7. .

  32. Bozkaya D, Muftu S. Mechanics of the tapered interference fit in dental implants. J Biomech. 2003;36(11):1649-58. .

  33. Dibart S, Warbington M, Su MF, Skobe Z. In vitro evaluation of the implant-abutment bacterial seal: the locking taper system. Int J Oral Maxillofac Implants. 2005;20(5):732-7. .

  34. Zipprich H, Weigl P, Lange B, Lauer H. Micromovements at the implant-abutment interface: Measurement, causes, and consequences. Implantologie. 2009;15:31-45 (in German). .

  35. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A. Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech. 2008;41(3):587-94. .

  36. Semper W, Kraft S, Kruger T, Nelson K. Theoretical considerations: implant positional index design. J Dent Res. 2009;88(8):725-30. .

  37. Huang H-L, Chang C-H, Hsu J-T, Faligatter AM, Ko CC. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007;22(4):551-62. .

  38. Hsu M-L, Chang CL. Application of finite element analysis in dentistry. In: Moratal D, editor. Finite element analysis. London: InTech Open; 2010. p. 43-60. .

  39. Rahimi A, Bourauel C, Jager A, Gedrange T, Heinemann F. Load transfer by fine threading the implant neck-a FEM study. J Physiol Pharmacol. 2009;60(Suppl 8):107-12. .

  40. Ahlberg JP, Kovero OA, Hurmerinta KA, Zepa I, Nissinen MJ, Kononen MH. Maximal bite force and its association with signs and symptoms of TMD, occlusion, and body mass index in a cohort of young adults. Cranio. 2003;21(4):248-52. .

  41. Koc D, Dogan A, Bek B. Bite force and influential factors on bite force measurements: a literature review. Eur J Dent. 2010;4(2):223-32. .

  42. Hansson S. A conical implant-abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone. Clini Oral Implants Res. 2003;14(3):286-93. .

  43. Misch CE. Bone density: a key determinant for treatment planning. Contemp Implant Dent. St. Louis, MO: Mosby; 2008. p. 130-46. .

  44. Guo X. Mechanical properties of cortical bone and cancellous bone tissue. Bone. 2001;10:1-23. .

  45. Norton M. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res. 1997;8(4):290-8. .

  46. Kayabasi O, Yuzbasioglu E, Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Adv Eng Software. 2006;37(10):649-58. .

  47. Huang H-L, Chang C-H, Hsu J-T, Faligatter AM, Ko C-C. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007;22(4). .