ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN 印刷: 1064-2315
ISSN オンライン: 2163-9337

巻:
巻 51, 2019 巻 50, 2018 巻 49, 2017 巻 48, 2016 巻 47, 2015 巻 46, 2014 巻 45, 2013 巻 44, 2012 巻 43, 2011 巻 42, 2010 巻 41, 2009 巻 40, 2008 巻 39, 2007 巻 38, 2006 巻 37, 2005 巻 36, 2004 巻 35, 2003 巻 34, 2002 巻 33, 2001 巻 32, 2000 巻 31, 1999 巻 30, 1998 巻 29, 1997 巻 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v51.i5.10
pages 1-15

On the Optimal Impulse Control in Descriptor Systems

Larisa A. Vlasenko
V. N. Karazin Kharkov National University, Ukraine
Anatoliy G. Rutkas
Kharkov National University of Radio and Electronics, Kharkov
Valeriy V. Semenets
Kharkov National University of Radio and Electronics, Kharkov
Arkadiy A. Chikriy
V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Kiev, Ukraine

要約

We study the optimal impulse control problem with the quadratic performance functional for a descriptor system. The system evolution is described by a linear differential-algebraic equation unsolved with respect to the derivative of the state. The system is controlled by changing the measurable control and the pure impulse control. The pure impulse control is characterized by impulse intensities and moments of impulse applications. The main restriction is that the characteristic matrix pencil corresponding to the state equation is regular. In terms of characteristic matrix pencil we establish the conditions for the existence and uniqueness of the optimal control and the corresponding optimal state. The optimal control and the optimal state are constructed by using the adjoint state which is a solution of the adjoint two-point boundary value problem. The results are illustrated by the example of descriptor system that describes transient states in a radio technical filter. For this system we consider the energetic performance functional with impulse intensities characterizing the energy of inertial elements and input voltage of the filter and also intensities and moments of impulse applications. Transient states under impulsive perturbations of currents and voltages are described by using the formula of constants variation for the impulsive descriptor system.

参考

  1. BensusanA., Lions G.L., Impulse control and quasi variational inequalities [Russian translation], Nauka, Moscow, 1987.

  2. Krasovskiy N.N., Motion control theory. Linear systems [in Russian], Nauka, Moscow, 1968.

  3. Butkovskiy A.G., Structural theory of distributed systems [in Russian], Nauka, Moscow, 1977.

  4. Chikrii A.A., Conflict-controlled processes, Springer Science and Business Media, Dordrecht, 2013, DOLIO. 1007/978-94-017-1135-7.

  5. Chikrii A.A., An analytical method in a dynamic pursuit games, Proceedings of the Steklov Institute of Mathematics, 2010, 271, No. 1, 69-85, DOI: 10.1134/S0081543810040073.

  6. Kryvonos Iu.G., Matychyn I.I., Chikrii A.A., Dynamic games with discontinuous trajectories [in Russian], Naukova dumka, Kiev, 2005.

  7. ChikriiA.A., Matichin I.I., Differential games with impulse control of players, Proceedings of the Steklov Institute of Mathematics (Suppl.), 2005, Suppl. 1, S68-S81, https://mathscinet.ams.org/ mathscinet-getitem?mr=2156250.

  8. ChikriiA.A., MatychynI.I., ChikriiK.A., Differential games with impulse control. Advances in dynamic game theory, Vol. 9. of Annals of the International Society of Dynamic Games, Birkhauser, Boston, 2007, 37-55, DOI: 10.1007/978-0-8176-4553-3 2.

  9. Matychyn I., Chikrii A., Onyshchenko V., Conflict-controlled processes involving fractional differential equations with impulses, Mathematica Balkanica, 2012, 26, No. 1-2, 159-168, http://www.mathbalkanica.info/.

  10. Vlasenko L.A., Rutkas A.G., Stochastic impulse control of parabolic systems of Sobolev type, Differential Equations, 2011,47, No. 10, 1498-1507, DOI: 10.1134/S0012266111100132.

  11. Vlasenko L.A., Rutkas A.G., Optimal control of a class of random distributed Sobolev type systems with aftereffect, Journal of Automation and Information Sciences, 2013, 45, No. 9, 66-76, DOI: 10.1615/JAutomatInfScien.v45.i9.60.

  12. Dai L., Singular control systems, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1989, DOI: 10.1007/Bfb0002475.

  13. KurinaG.A., MarzR., On linear quadratic optimal control problems for time-variables descriptor systems, SLAM J. Control Optim., 2004, 42, No. 6, 2062-2077, DOI: 10.1137/S0363012900380991.

  14. Duan G.R., Analysis and design of descriptor linear systems, Springer, New York, Dordrecht, Heidelberg, London, 2010, 10.1007/978-1-4419-6397-0.

  15. Vlasenko L.A., Rutkas A.G., Semenets V.V., Sequential composition and decomposition of descriptor control systems, Journal of Automation and Lnformation Sciences, 2018, 50, No. 9, 60-75, DOI: 10.1615/JAutomatInfScien.v50.i9.50.

  16. Vlasenko L.A., Rutkas A.G., On the optimal control of systems described by implicit evolution equations, Differential Equations, 2009, 45, No. 3, 429-438, DOI: 10.1134/S0012266109030124.

  17. Vlasenko L.A., Chikrii A.A., The method of resolving functional for a dynamic game in a Sobolev system, Journal of Automation and Lnformation Sciences, 2014, 46, No. 7, 1-11, DOI: 10.1615/JAutomatInfScien.v46.i7.10.

  18. Vlasenko L.A., Rutkas A.G., On a differential game in a system described by an implicit differential- operator equation, Differential Equations, 2015,51, No. 6, 798-807, DOI: 10.1134/S0012266115060117.

  19. Rozenfeld A.S., YakhinsonB.I., Transient processes and generalized functions [in Russian], Nauka, Moscow, 1966.

  20. Vlasenko L.A., PerestyukN.A., On the solvability of impulsive differential-algebraic equations, UkrainianMathematical Journal, 2005, 57, No. 4, 551-564, DOI: 10.1007/sll253-005-0209-4.

  21. Vlasenko L.A., Rutkas A.G., Samoilenko A.M., Problem of impulsive regulator for one dynamical system of the Sobolev type, Ukrainian Mathematical Journal, 2008, 60, No. 8, 1200-1209, DOI: 10.1007/sll253-009-0135-y.

  22. Vlasenko L.A., Samoilenko A.M., Optimal control with impulsive component for systems described by operator differential equations, Ukrainian Mathematical Journal, 2009, 61, No. 8, 1250-1263, DOI: 10.1007/sll253-010-0274-l.

  23. Lions J.-L., Controle optimal de systemes gouvernes par des equations aux derrivees partielles [Russian translation], Mir, Moscow, 1972.


Articles with similar content:

Method of Structural Parametric Synthesis of Complex Ergatic Distributed Informational-Controlling System of Response on Conflict Situation
Journal of Automation and Information Sciences, Vol.46, 2014, issue 3
Yuriy G. Danyk , Alexey A. Pysarchuk
On Applying the Apparatus of Analyzing the Time Series to Estimation of Solar Structures Rotations in the Upper Chromosphere
Journal of Automation and Information Sciences, Vol.38, 2006, issue 6
Nataliya N. Stepanyan, Yarema I. Zyelyk, Olga A. Andryeyeva
Modified Frequency Method of Structural-Parametric Identification of Systems
Journal of Automation and Information Sciences, Vol.47, 2015, issue 8
Sergey V. Melnichuk
Synthesis of Optimal Control of Stochastic Observations Based on a Priori Information Model of Measurements
Journal of Automation and Information Sciences, Vol.31, 1999, issue 1-3
Vladimir A. Pogorelov, Sergey V. Sokolov
The Solution of the Identification Problem of Stochastic Process Structure at Nonlinear Dimension
Journal of Automation and Information Sciences, Vol.37, 2005, issue 1
Sergey V. Sokolov, Peter S. Shevchuk