ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Journal of Automation and Information Sciences
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN 印刷: 1064-2315
ISSN オンライン: 2163-9337

巻:
巻 51, 2019 巻 50, 2018 巻 49, 2017 巻 48, 2016 巻 47, 2015 巻 46, 2014 巻 45, 2013 巻 44, 2012 巻 43, 2011 巻 42, 2010 巻 41, 2009 巻 40, 2008 巻 39, 2007 巻 38, 2006 巻 37, 2005 巻 36, 2004 巻 35, 2003 巻 34, 2002 巻 33, 2001 巻 32, 2000 巻 31, 1999 巻 30, 1998 巻 29, 1997 巻 28, 1996

Journal of Automation and Information Sciences

DOI: 10.1615/JAutomatInfScien.v28.i3-4.100
pages 83-100

An Algorithm for Nonstochastic Identification of Controlled-Object Parameters

Z. Zh. Ametzhanova

要約

The set-theoretic (nonstochastic, guaranteed) approach [1-3, 5-7] is used widely in for solving identification problems when only the sets of the possible values of the object's unknown parameters are specified. This approach allows one to track the evolution of the multidimensional ellipsoidal estimates (approximations) that are guaranteed to contain the object's unknown parameters vector. According to the general schema for solving identification problems by the set-theoretic approach, every ellipsoidal estimate is an intersection of two sets. One of them is the result of processing all past information, and the other corresponds to the latest measurement of the object output. Investigations associated with the construction of set estimates of the unknown parameters vector and the solution of the identification problem in its nonstatic posing are continued in this paper. In contrast with existing algorithms, a new structural variant of the ellipsoidal estimates of the unknown parameters for the case in which several layers that correspond to the latest measurements of the object output intersect with the a-priori ellipsoidal set is proposed here.