ライブラリ登録: Guest

S-Nitrosation Mediates Multiple Pathways That Lead to Tumor Progression in Estrogen Receptor−Negative Breast Cancer

巻 3, 発行 2, 2012, pp. 117-124
DOI: 10.1615/ForumImmunDisTher.2012006108
Get accessGet access

要約

Chronic inflammation within the tumor microenvironment is a major driver of tumor progression and poor prognosis. Inducible nitric oxide synthase (NOS2) is present in numerous solid tumors. Estrogen receptor−negative (ER-) patients with high expression of tumor NOS2 have a poorer outcome than patients with low expression of NOS2. Furthermore, expression of NOS2 is associated with the basal-like breast cancer phenotype. Using an in vitro model, we have found that nitrosation of critical thiols and nitration of tyrosines lead to the activation of membrane receptors such as epithelial growth factor receptor, Src, Ras, and CD63. These nitric oxide−mediated events in itiate oncogenic signaling pathways such as PI3K/Akt, Ras/ERK, β-catenin, nuclear factor-κÂ, and AP-1. These data suggest that NOS2 can serve as a major "nonmutatational driver" of ER- breast cancer.

によって引用された
  1. Cheng Robert Y.S., Basudhar Debashree, Ridnour Lisa A., Heinecke Julie L., Kesarwala Aparna H., Glynn Sharon, Switzer Christopher H., Ambs Stefan, Miranda Katrina M., Wink David A., Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways, Nitric Oxide, 43, 2014. Crossref

  2. Thomas Douglas D., Heinecke Julie L., Ridnour Lisa A., Cheng Robert Y., Kesarwala Aparna H., Switzer Christopher H., McVicar Daniel W., Roberts David D., Glynn Sharon, Fukuto Jon M., Wink David A., Miranda Katrina M., Signaling and stress: The redox landscape in NOS2 biology, Free Radical Biology and Medicine, 87, 2015. Crossref

  3. Martinez Luis, Thames Easter, Kim Jinna, Chaudhuri Gautam, Singh Rajan, Pervin Shehla, Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis, BMC Cancer, 16, 1, 2016. Crossref

  4. Basudhar Debashree, Somasundaram Veena, de Oliveira Graciele Almeida, Kesarwala Aparna, Heinecke Julie L., Cheng Robert Y., Glynn Sharon A., Ambs Stefan, Wink David A., Ridnour Lisa A., Nitric Oxide Synthase-2-Derived Nitric Oxide Drives Multiple Pathways of Breast Cancer Progression, Antioxidants & Redox Signaling, 26, 18, 2017. Crossref

  5. Du Qiang, Geller David A., Cross-Regulation Between iNOS/NO and Wnt/β-Catenin Signaling Pathways, in Nitric Oxide, 2017. Crossref

  6. Kamm Anna, Przychodzen Paulina, Kuban-Jankowska Alicja, Jacewicz Dagmara, Dabrowska Aleksandra M., Nussberger Stephan, Wozniak Michal, Gorska-Ponikowska Magdalena, Nitric oxide and its derivatives in the cancer battlefield, Nitric Oxide, 93, 2019. Crossref

  7. Guequén Anita, Zamorano Patricia, Córdova Francisco, Koning Tania, Torres Angelo, Ehrenfeld Pamela, Boric Mauricio P., Salazar-Onfray Flavio, Gavard Julie, Durán Walter N., Quezada Claudia, Sarmiento José, Sánchez Fabiola A., Interleukin-8 Secreted by Glioblastoma Cells Induces Microvascular Hyperpermeability Through NO Signaling Involving S-Nitrosylation of VE-Cadherin and p120 in Endothelial Cells, Frontiers in Physiology, 10, 2019. Crossref

  8. McGinity Christopher L., Palmieri Erika M., Somasundaram Veena, Bhattacharyya Dibyangana D., Ridnour Lisa A., Cheng Robert Y. S., Ryan Aideen E., Glynn Sharon A., Thomas Douglas D., Miranda Katrina M., Anderson Stephen K., Lockett Stephen J., McVicar Daniel W., Wink David A., Nitric Oxide Modulates Metabolic Processes in the Tumor Immune Microenvironment, International Journal of Molecular Sciences, 22, 13, 2021. Crossref

  9. Palczewski Marianne B., Kuschman Hannah Petraitis, Bovee Rhea, Hickok Jason R., Thomas Douglas D., Vorinostat exhibits anticancer effects in triple-negative breast cancer cells by preventing nitric oxide-driven histone deacetylation, Biological Chemistry, 402, 4, 2021. Crossref

  10. Ibáñez-Vea María, Huang Honggang, Martínez de Morentin Xabier, Pérez Estela, Gato Maria, Zuazo Miren, Arasanz Hugo, Fernández-Irigoyen Joaquin, Santamaría Enrique, Fernandez-Hinojal Gonzalo, Larsen Martin R., Escors David, Kochan Grazyna, Characterization of Macrophage Endogenous S-Nitrosoproteome Using a Cysteine-Specific Phosphonate Adaptable Tag in Combination with TiO2 Chromatography, Journal of Proteome Research, 17, 3, 2018. Crossref

  11. Miranda Katrina M., Ridnour Lisa A., McGinity Christopher L., Bhattacharyya Dana, Wink David A., Nitric Oxide and Cancer: When to Give and When to Take Away?, Inorganic Chemistry, 60, 21, 2021. Crossref

  12. Sengupta Rajib, Coppo Lucia, Sircar Esha, Mishra Pradeep, Holmgren Arne, S‐Denitrosylation by the C‐Terminal Swinging Arm of R1 Subunit: A Novel Mechanism to Restore Ribonucleotide Reductase Activity, ChemistrySelect, 6, 8, 2021. Crossref

  13. Chatterji Ajanta, Banerjee Debasmita, Billiar Timothy R., Sengupta Rajib, Understanding the role of S-nitrosylation/nitrosative stress in inflammation and the role of cellular denitrosylases in inflammation modulation: Implications in health and diseases, Free Radical Biology and Medicine, 172, 2021. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain