ライブラリ登録: Guest
Critical Reviews™ in Immunology

年間 6 号発行

ISSN 印刷: 1040-8401

ISSN オンライン: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Current Headway in Cancer Immunotherapy Emphasizing the Practice of Genetically Engineered T Cells to Target Selected Tumor Antigens

巻 41, 発行 1, 2021, pp. 23-40
DOI: 10.1615/CritRevImmunol.2020037044
Get accessGet access

要約

Genetically engineered T-cell therapies have the adeptness to modernize and revolutionize the treatment of cancer. Cancer immunotherapy, by depending on this fundamental recognition method, supports the antitumor viability of T cells and extends adaptive immunity by encouraging adoptive transfer of genetically engineered T cells. T cells assume a key part in cell-mediated immunity as well as to make strategies for genetically modify T cells, counting chimeric antigen receptor (CAR) T-cell therapy and T-cell receptor (TCR) T-cell therapy. They have accomplished significant advances in the treatment of neoplastic diseases. Tumor cells can produce neoantigens that can possibly be immunogenic, as mutated proteins or proteins with reformed translational processing can be viewed as unfamiliar or foreign by immune system. Recognizable human tumor antigens have prompted a superior understanding the idea of tumor antigens, anti-tumor immune reactions in immunotherapeutic patients as well as tumor escape mechanisms. Furthermore, paucity of exceptionally and homogeneously expressed tumor antigens and intrinsic plasticity of neoplastic cells provide key challenges to specificity, effectiveness, and generally adequacy of genetically engineered T-cell therapies. Difficulties ranges from the determination of antigen targets and managing regulatory and safety issues to effectively explore routes to commercial advancement. In any case, the empowering clinical information, advancement in scientific understanding of tumor immunology along with improvements in manufacture of cell products are altogether propelling the clinical interpretation of modern cancer immunotherapies. In this review, we sum up the advancement of genetically engineered T cells, tumor antigen with intrigue the most recent investigation regarding genetically engineered T cells for cancer immunotherapy, and to confer strategies for refining enactment of these T cells to combat cancers.

参考
  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90. .

  2. Wagner PD, Srivastava S. New paradigms in translational science research in cancer biomarkers. Transl Res. 2012;159(4):343-53. .

  3. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: Harnessing the T cell response. Nat Rev Immunol. 2012;12(4):269-81. .

  4. Kochenderfer JN, Rosenberg SA. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat Rev Clin Oncol. 2013;10(5):267-76. .

  5. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480-89. .

  6. Oiseth SJ, Aziz MS. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250-61. .

  7. Decker WK, Safdar A. Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley's legacy revisited. Cytokine Growth Factor Rev. 2009;20:271-81. .

  8. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimaraes F, Burt BM, Kheradmand F, Paust S. Cancer immunotherapy: Historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829. .

  9. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev. 2014;257(1):14-38. .

  10. Jensen MC, Riddell SR. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev. 2014;257(1):127-44. .

  11. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257(1):56-71. .

  12. Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev. 2014;257(1):107-26. .

  13. Cheadle EJ, Gornall H, Baldan V, Hanson V, Hawkins RE, Gilham DE. CAR T cells: Driving the road from the laboratory to the clinic. Immunol Rev. 2014;257(1):91-06. .

  14. Scarfo I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: Targeting the tumor micro-environment. J Immunother Cancer. 2017;5:28. .

  15. Fujiwara H. Adoptive immunotherapy for haematological malignancies using T cells gene-modified to express tumor antigen-specific receptors. Pharmaceuticals. 2014;7(12):1049-68. .

  16. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: Interpreting clinical outcomes to date. Blood. 2016;127(26):3312-20. .

  17. Maus MV, Grupp SA, Porter DL, June CH. Antibody modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123(17):2625-35. .

  18. Snauwaert S, Vandekerckhove B, Kerre T. Can immunotherapy specifically target acute myeloid leukemic stem cells? OncoImmunology. 2013;2(2):e22943. .

  19. Morris EC, Stauss HJ. Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood. 2016;127(26):3305-11. .

  20. Baitsch L, Legat A, Barba L, Fuertes Marraco SA, Rivals JP, Baumgaertner P, Christiansen-Jucht C, Bouzourene H, Rimoldi D, Pircher H, Rufer N, Matter M, Michielin O, Speiser DE. Extended co-expression of inhibitory receptors by human CD8 T cells depending on differentiation, antigen-specificity and anatomical localization. PLoS One. 2012;7:e30852. .

  21. Sawada M, Goto K, Morimoto-Okazawa A, Haruna M, Yamamoto K, Yamamoto Y, Nakagawa S, Hiramatsu K, Matsuzaki S, Kobayashi E, Kawashima A, Hirata M, Iwahori K, Kimura T, Ueda Y, Kimura T, Wada H. PD-1+ Tim3+ tumor-infiltrating CD8 T cells sustain the potential for IFN production, but lose cytotoxic activity in ovarian cancer. Int Immunol. 2020;32:397-405. .

  22. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2008;10:29-37. .

  23. Sauce D, De Almeida JR, Larsen M, Haro L, Autran B, Freeman GJ, Appay V. PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status. AIDS. 2007;21:2005-13. .

  24. Guedan S, Ruella M, June CH. Emerging cellular therapies for cancer. Annu Rev Immunol. 2019;37:145-71. .

  25. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252-64. .

  26. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR, Morton KE, Laurencot CM, Steinberg SM, White DE, Dudley ME. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011;17:4550-57. .

  27. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235-71. .

  28. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 2011;331(6024):1565-70. .

  29. Wang HY, Wang RF. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv Immunol. 2012;114:151-76. .

  30. Van Den Eynde B, Lethe B, Van Pel A, De Plaen E, Boon T. The gene coding for a major tumor rejection antigen of tumor P815 is identical to the normal gene of syngeneic DBA/2 mice. J Exp Med. 1991;173(6):1373-84. .

  31. Yee C. The use of endogenous T cells for adoptive transfer. Immunol Rev. 2014;257(1):250-63. .

  32. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265-77. .

  33. Robbins PF, El-Gamil M, Li YF, Kawakami Y, Loftus D, Appella E, Rosenberg SA. A mutated beta-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med. 1996;183:1185-92. .

  34. Maccalli C, Li YF, El-Gamil M, Rosenberg SA, Robbins PF. Identification of a colorectal tumor-associated antigen (COA-1) recognized by CD4+ T lymphocytes. Cancer Res. 2003;63:6735-43. .

  35. Vigneron N, van den Eynde BJ. Insights into the processing of MHC class I ligands gained from the study of human tumor epitopes. Cell Mol Life Sci. 2011;68(9):1503-20. .

  36. Boon T, Coulie PG, van den Eynde BJ, van der Bruggen P. Human T cell responses against melanoma. Annu Rev Immunol. 2006;24:175-208. .

  37. Coulie PG, van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: At the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135-46. .

  38. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-54. .

  39. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, Pitot HC, Hamid O, Bhatia S, Martins R, Eaton K, Chen S, Salay TM, Alaparthy S, Grosso JF, Korman AJ, Parker SM, Agrawal S, Goldberg SM, Pardoll DM, Gupta A, Wigginton JM. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455-65. .

  40. Shevach EM. Application of IL-2 therapy to target T regulatory cell function. Trends Immunol. 2012;33(12): 626-32. .

  41. Wang HY, Wang RF. Regulatory T cells and cancer. Curr Opin Immunol. 2007;19(2):217-23. .

  42. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010;10(7):490-500. .

  43. Grimm EA, Mazumder A, Zhang HZ, Rosenberg SA. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes. J Exp Med. 1982;155(6):1823-41. .

  44. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991;174(1):139-49. .

  45. Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987;316(15):889-97. .

  46. Hontscha C, Borck Y, Zhou H, Messmer D, Schmidt-Wolf IG. Clinical trials on CIK cells: First report of the international registry on CIK cells (IRCC). J Cancer Res Clin Oncol. 2011;137(2):305-10. .

  47. Jenq RR, van den Brink MR. Allogeneic haematopoietic stem cell transplantation: Individualized stem cell and immune therapy of cancer. Nat Rev Cancer. 2010;10:213-21. .

  48. Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676-80. .

  49. Correale P, Walmsley K, Nieroda C, Zaremba S, Zhu M, Schlom J, Tsang KY. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst. 1997;89:293-300. .

  50. Vujanovic L, Shi J, Kirkwood JM, Storkus WJ, Butter-field LH. Molecular mimicry of MAGE-A6 and Mycoplasma penetrans HF-2 epitopes in the induction of antitumor CD8(+) T-cell responses. Oncoimmunology. 2014;3:e954501. .

  51. Tawara I, Kageyama S, Miyahara Y, Fujiwara H, Nishida T, Akatsuka Y, Ikeda H, Tanimoto K, Terakura S, Murata M, Inaguma Y, Masuya M, Inoue N, Kidokoro T, Okamoto S, Tomura D, Chono H, Nukaya I, Mineno J, Naoe T, Emi N, Yasukawa M, Katayama N, Shiku H. Safety and persistence of WTl-specific T-cell receptor gene transduced lymphocytes in patients with AML and MDS. Blood. 2017;130:1985-94. .

  52. Sharpe ME. T-cell immunotherapies and the role of non-clinical assessment: The balance between efficacy and pa-thology. Toxicol Pathol. 2018;46(2):131-46. .

  53. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126-29. .

  54. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254: 1643-47. .

  55. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: Opportunities and challenges. Dis Model Mech. 2015;8:337-50. .

  56. Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65:2457-64. .

  57. Zhou G, Levitsky HI. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J Immunol. 2007;178:2155-62. .

  58. Vigneron N, Stroobant V, van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: The 2013 update. Cancer Immun. 2013;13:15. .

  59. Kawakami Y, Robbins PF, Wang X, Tupesis JP, Parkhurst MR, Kang X, Sakaguchi K, Appella E, Rosenberg SA. Identification of new melanoma epitopes on melanosomal proteins recognized by tumor infiltrating T lymphocytes restricted by HLA-A1, - A2, and -A3 alleles. J Immunol. 1998;161(12):6985-92. .

  60. Germeau C, Ma W, Schiavetti F, Lurquin C, Henry E, Vigneron N, Brasseur F, Lethe B, De Plaen E, Velu T, Boon T, Coulie PG. High frequency of antitumor T cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med. 2005;201(2):241-48. .

  61. Schirle M, Keilholz W, Weber B, Gouttefangeas C, Dumrese T, Becker HD, Stevanovic S, Rammensee HG. Identification of tumor associated MHC class I ligands by a novel T cell-independent approach. Eur J Immunol. 2000;30(8):2216-25. .

  62. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci U S A. 1995;92:11810-13. .

  63. Kawakami Y, Fujita T, Matsuzaki Y, Sakurai T, Tsukamoto M, Toda M, Sumimoto H. Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci. 2004;95(10):784-91. .

  64. Gjertsen MK, Bjerheim J, Saeterdal I, Myklebust J, Gaudernack G. Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer. 1997;72(5):784-90. .

  65. Linard B, Bezieau S, Benlalam H, Labarriere N, Guilloux Y, Diez E, Jotereau F. A rasmutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol. 2002;168(9):4802-08. .

  66. Ito D, Visus C, Hoffmann TK, Balz V, Bier H, Appella E, Whiteside TL, Ferris RL, DeLeo AB. Immunological characterization of missense mutations occurring within cytotoxic T cell-defined p53 epitopes in HLA-A-0201+ squamous cell carcinomas of the head and neck. Int J Cancer. 2007;120(12):2618-24. .

  67. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333:1038-44. .

  68. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, Amrolia PJ, Hurwitz JL, Brenner MK, Rooney CM. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925-35. .

  69. Rooney C, Leen A. Moving successful virus-specific T-cell therapy for hematopoietic stem cell recipients to late phase clinical trials. Mol Ther Nucleic Acids. 2012;1:e55. .

  70. Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19:747-52. .

  71. Besser MJ, Shapira-Frommer R, Itzhaki O, Treves A J, Zippel DB, Levy D, Kubi A, Shoshani N, Zikich D, Ohayon Y, Ohayon D, Shalmon B, Markel G, Yerushalmi R, Apter S, Ben-Nun A, Ben-Ami E, Shimoni A, Nagler A, Schachter J. Adoptive transfer of tumour infiltrating lymphocytes in metastatic melanoma patients: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res. 2013;19:4792-800. .

  72. Dudley ME, Gross CA, Somerville RP, Hong Y, Schaub NP, Rosati SF, White DE, Nathan D, Restifo NP, Steinberg SM, Wunderlich JR, Kammula US, Sherry RM, Yang JC, Phan GQ, Hughes MS, Laurencot CM, Rosenberg SA. Randomized selection design trial evaluating CD8+-enriched versus unselected tumor-infiltrating lymphocytes for adoptive cell therapy for patients with melanoma. J Clin Oncol. 2013;31:2152-59. .

  73. Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, van Rooij N, Linnemann C, van Buuren MM, Urbanus JH, Beltman JB, Thor Straten P, Li YF, Robbins PF, Besser MJ, Schachter J, Kenter GG, Dudley ME, Rosenberg SA, Haanen JB, Hadrup SR, Schumacher TN. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1:409-18. .

  74. Zhao L, Cao YJ. Engineered T-cell therapy for cancer in the clinic. Front Immunol. 2019;10:2250. .

  75. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med. 1999;5(6):677-85. .

  76. Pittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, Fleischhauer K, Cerundolo V, Cerottini JC, Romero P. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med. 1999;190(5):705-15. .

  77. Wang M, Yin B, Wang HY, Wang R-F. Current advances in T-cell-based cancer immunotherapy. Immunotherapy. 2014;6(12):1265-78. .

  78. Oates J, Jakobsen BK. ImmTACs: Novel bi-specific agents for targeted cancer therapy. Oncoimmunology. 2013;2(2):e22891. .

  79. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024-28. .

  80. Chmielewski M, Hombach AA, Abken H. CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunol Rev. 2014;257(1):83-90. .

  81. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, Brentjens RJ. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18): 4133-41. .

  82. Ramalingam SS, Yang JC, Lee CK, Kurata T, Kim DW, John T, Nogami N, Ohe Y, Mann H, Rukazenkov Y, Ghiorghiu S, Stetson D, Markovets A, Barrett JC, Thress KS, Janne PA. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018;36:841-49. .

  83. Lorentzen CL, Straten PT. CD19-chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol. 2015;82(4):307-19. .

  84. Greinix HT. Role of CAR-T-cell therapy in B-cell acute lymphoblastic leukemia. Memo. 2020;13:36-42. .

  85. Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov. 2017;16:669. .

  86. Southam CM, Brunschwig A, Levin AG, Dizon QS. Effect of leukocytes on transplantability of human cancer. Cancer. 1966;19:1743-53. .

  87. Weiden PL, Flournoy N, Thomas ED, Prentice R, Fefer A, Buckner CD, Storb R. Antileukemic effect of graft-versushost disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300:1068-73. .

  88. Palmer DC, Guittard GC, Franco Z, Crompton JG, Eil RL, Patel SJ, Ji Y, Van Panhuys N, Klebanoff CA, Sukumar M, Clever D, Chichura A, Roychoudhuri R, Varma R, Wang E, Gattinoni L, Marincola FM, Balagopalan L, Samelson LE, Restifo NP. Cish actively silences TCR signalling in CD8+ T cells to maintain tumor tolerance. J Exp Med. 2015;212:2095. .

  89. Shimabukuro-Vornhagen A, Godel P, Subklewe M, Stemmler HJ, SchloBer HA, Schlaak M, Kochanek M, Boll B, von Bergwelt-Baildon MS. Cytokine release syndrome. J Immunother Cancer. 2018;6:56. .

  90. Crowther MD, Svane IM, Met O. T-cell gene therapy in cancer immunotherapy: Why it is no longer just CARs on the road. Cells. 2020;9:1588. .

  91. Wolfel T, Van Pel A, Brichard V, Schneider J, Seliger B, Meyer zum Buschenfelde KH, Boon T. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol. 1994;24(3):759-64. .

  92. Vigneron N, Ooms A, Morel S, Ma W, Degiovanni G, van den Eynde BJ. A peptide derived from melanocytic protein gp100 and presented by HLA-B35 is recognized by autologous cytolytic T lymphocytes on melanoma cells. Tissue Antigens. 2005;65(2):156-62. .

  93. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994;180(1):347-52. .

  94. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA. Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med. 1996.184(6):2207-16. .

  95. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD. Melanocyte destruction after antigen-specific immunotherapy of melanoma: Direct evidence of T cell-mediated vitiligo. J Exp Med. 2000;192(11):1637-43. .

  96. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, Duerkopp N, Roberts IM, Pogosov GL, Ho WY, Ochsenreither S, Wolfl M, Bar M, Radich JP, Yee C, Greenberg PD. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra27. .

  97. Vigneron N. Human tumor antigens and cancer immuno- therapy. BioMed Res Int. 2015;2015:948501. .

  98. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U, Robbins PF, Huang J, Citrin DE, Leitman SF, Wunderlich J, Restifo NP, Thomasian A, Downey SG, Smith FO, Klapper J, Morton K, Laurencot C, White DE, Rosenberg SA. Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26:5233-9. .

  99. Klebanoff CA, Khong HT, Antony PA, Palmer DC, Restifo NP. Sinks, suppressors and antigen presenters: How lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005;26:111-7. .

  100. Uttenthal BJ, Chua I, Morris EC, Stauss HJ. Challenges in T cell receptor gene therapy. J Gene Med. 2012;14: 386-99. .

  101. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509-18. .

  102. Casucci M, Hawkins RE, Dotti G, Bondanza A. Over-coming the toxicity hurdles of genetically targeted T cells. Cancer Immunol Immunother. 2015;64:123-30. .

  103. Duong CP, Westwood JA, Berry LJ, Darcy PK, Kershaw MH. Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer. Immunotherapy. 2011;3:33-48. .

  104. Hegde M, Corder A, Chow KK, Mukherjee M, Ashoori A, Kew Y, Zhang YJ, Baskin DS, Merchant FA, Brawley VS, Byrd TT, Krebs S, Wu MF, Liu H, Heslop HE, Gottschalk S, Yvon E, Ahmed N. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21:2087-101. .

  105. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711-23. .

  106. Zhylko A, Winiarska M, Graczyk-Jarzynka A. The great war of today: Modifications of CAR-T cells to effectively combat malignancies. Cancers. 2020;12:2030. .

  107. Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T Jr, Grob JJ, Chesney J, Chin K, Chen K, Hoos A, O'Day SJ, Lebbe C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11(2):155-64. .

  108. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843-51. .

  109. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcino embryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19:620-6. .

  110. Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R, Gratama JW. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21:904-12. .

  111. Ramos CA, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, Liu E, Carrum G, Kamble RT, Gee AP, Mei Z, Wu MF, Liu H, Grilley B, Rooney CM, Brenner MK, Heslop HE, Dotti G. Clinical responses with T lymphocytes targeting malignancy-associated kappa light chains. J Clin Invest. 2016;126:2588-96. .

  112. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18:666-8. .

  113. Hopfinger G, Jager U, Worel N. CAR-T-cell therapy in diffuse large B cell lymphoma: Hype and hope. Hemasphere. 2019;3(2):e185. .

  114. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36:133-51. .

  115. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535-46. .

  116. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH. Cardiovascular toxicity and titin cross reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122:863-71. .

  117. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, Bossi G, Vuidepot A, Powlesland AS, Legg A, Adams KJ, Bennett AD, Pumphrey NJ, Williams DD, Binder-Scholl G, Kulikovskaya I, Levine BL, Riley JL, Varela-Rohena A, Stadtmauer EA, Rapoport AP, Linette GP, June CH, Hassan NJ, Kalos M, Jakobsen BK. Identification of a titinderived HLA-A1- presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013;5:197ra103. .

  118. Lurquin C, Lethe B, De Plaen E, Corbiere V, Theate I, van Baren N, Coulie PG, Boon T. Contrasting frequencies of antitumor and anti-vaccine T cells in metastases of a melanoma patient vaccinated with aMAGE tumor antigen. J Exp Med. 2005;201(2):249-57. .

  119. van Houdt IS, Sluijter BJ, Moesbergen LM, Vos WM, de Gruijl TD, Molenkamp BG, van den Eertwegh AJ, Hooijberg E, van Leeuwen PA, Meijer CJ, Oudejans JJ. Favorable outcome in clinically stage II melanoma patients is associated with the presence of activated tumor infiltrating T-lymphocytes and preserved MHC class I antigen expression. Int J Cancer. 2008;123(3):609-15. .

  120. Vitale M, Rezzani R, Rodella L, Zauli G, Grigolato P, Cadei M, Hicklin DJ, Ferrone S. HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions. Cancer Res. 1998;58(4):737-42. .

  121. Ogino T, Shigyo H, Ishii H, Katayama A, Miyokawa N, Harabuchi Y, Ferrone S. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 2006;66(18):9281-9. .

  122. Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ, Lotze MT. Tumor escape from immune recognition: Lethal recurrent melanoma in a patient associated with down regulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 1996;98(7):1633-41. .

  123. Kamarashev J, Ferrone S, Seifert B, Boni R, Nestle FO, Burg G, Dummer R. TAP1 down-regulation in primary melanoma lesions: An independent marker of poor prognosis. Int J Cancer. 2001;95(1):23-8. .

  124. Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014; 153(1):145-52. .

  125. Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cow- ell LG, Bartido S, Stefanski J, Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Rijo IV, Hedvat C, Kobos R, Curran K, Steinherz P, Jurcic J, Rosenblat T, Maslak P, Frattini M, Sadelain M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5:177ra138. .

  126. Li D, Wang W. Booming cancer immunotherapy fighting tumors. Sci China Life Sci. 2017;60:1445-9. .

  127. Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis. 2015;36:1085-93. .

  128. Jiang L, Wang W. Genetically modified immune cells for cancer immunotherapy. Sci China Life Sci. 2018;61:1277-9. .

  129. Wei J, Han W. CART trials are going ahead. Sci China Life Sci. 2017;60:1276-9. .

  130. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267-96. .

  131. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Yang JC, Kammula US, Devillier L, Carpenter R, Nathan DA, Morgan RA, Laurencot C, Rosenberg SA. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigenreceptor-transduced T cells. Blood. 2012;119:2709-20. .

  132. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL. T cells expressing CD 19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose escalation trial. Lancet. 2015;385:517-28. .

  133. Porter DL, Hwang WT, Frey NV, Lacey SF, Shaw PA, Loren AW, Bagg A, Marcucci KT, Shen A, Gonzalez V, Ambrose D, Grupp SA, Chew A, Zheng Z, Milone MC, Levine BL, Melenhorst JJ, June CH. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7:303ra139. .

  134. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, Yang JC, Phan GQ, Hughes MS, Sherry RM, Raffeld M, Feldman S, Lu L, Li YF, Ngo LT, Goy A, Feldman T, Spaner DE, Wang ML, Chen CC, Kranick SM, Nath A, Nathan DA, Morton KE, Toomey MA, Rosenberg SA. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540-9. .

  135. Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR, Maloney DG. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126:2123-38. .

  136. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507-17. .

  137. Faramand R, Jain M, Staedtke V, Kotani H, Bai R, Reid K, Lee SB, Spitler K, Wang X, Cao B, Pinilla J, Lazaryan A, Khimani F, Shah B, Chavez JC, Nishihori T, Mishra A, Mullinax J, Gonzalez R, Hussaini M, Dam M, Brandjes BD, Bachmeier CA, Anasetti C, Locke FL, Davila ML. Tumor microenvironment composition and severe cytokine release syndrome (CRS) influence toxicity in patients with large B-cell lymphoma treated with axicabtagene ciloleucel. Clin Cancer Res. 2020; 26(18):4823-31. .

  138. Sachdeva M, Duchateau P, Depil S, Poirot L, Valton J. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T cells prevents monocyte-dependent re-lease of key cytokine release syndrome mediators. J Biol Chem. 2019;294:5430-7. .

  139. Hegde PS, Chen DS. Top 10 challenges in cancer immunotherapy. Immunity. 2020;52:17-35. .

  140. Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-engineered T cells meet new challenges to treat solid tumors: Choice of antigen, T cell fitness and sensitization of tumor milieu. Front Immunol. 2013;4:363. .

  141. Schaft N, Lankiewicz B, Drexhage J, Berrevoets C, Moss DJ, Levitsky V, Bonneville M, Lee SP, McMichael AJ, Gratama JW, Bolhuis RL, Willemsen R, Debets R. T cell retargeting to EBV antigens following TCR gene transfer: CD28-containing receptors mediate enhanced antigen-specific IFNgamma production. Int Immunol. 2006;18:591-601. .

  142. Maher J. Immunotherapy of malignant disease using chimeric antigen receptor engrafted T cells. ISRN Oncol. 2012;278093. .

  143. Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. Semin Cancer Biol. 2018;52:39-52. .

  144. Donini C, D'Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis. 2018;10:S1581-601. .

  145. Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: New developments and challenges. J Hematol Oncol. 2018;11:39. .

  146. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRZ/CD28 receptor. Nat Biotechnol. 2002;20:70-5. .

  147. Finney HM, Akbar AN, Lawson AD. Activation of resting human primary T cells with chimeric receptors: Costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR Z chain. J Immunol. 2004;172:104-13. .

  148. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, Smith DD, Forman SJ, Jensen MC, Cooper LJ CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66:10995-1004. .

  149. Ren J, Zhao Y. Advancing chimeric antigen receptor T-cell therapy with CRISPR/Cas9. Protein Cell. 2017;8:634-43. .

  150. Qasim W, Zhan H, Samarasinghe S, Adams S, Amrolia P, Stafford S, Butler K, Rivat C, Wright G, Somana K, Ghorashian S, Pinner D, Ahsan G, Gilmour K, Lucchini G, Inglott S, Mifsud W, Chiesa R, Peggs KS, Chan L, Farzeneh F, Thrasher AJ, Vora A, Pule M, Veys P. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med. 2017;9(374):eaaj2013. .

  151. Brower V. The CAR T-cell race. Scientist. 2015;73-6. .

  152. Ray SK, Meshram Y, Mukherjee S. Cancer immunology and CAR-T cells: A turning point therapeutic approach in cancer treatment focusing on colorectal carcinoma with clinical landscape. Curr Mol Med. 2020;20:1-16. .

  153. Bonter K, Breckenridge Z, Lachance S, Delisle JS, Bubela T. Opportunities and challenges for the cellular immuno-therapy sector: A global landscape of clinical trials. Regen Med. 2017;12(6):623-36. .

  154. Flemming A. Deal watch: Pfizer and GSK join race for T cell cancer therapies. Nat Rev Drug Discov. 2014;13:568-9. .

によって引用された
  1. Ray Suman Kumar, Mukherjee Sukhes, Imitating Hypoxia and Tumor Microenvironment with Immune Evasion by Employing Three Dimensional In vitro Cellular Models: Impressive Tool in Drug Discovery, Recent Patents on Anti-Cancer Drug Discovery, 17, 1, 2022. Crossref

  2. Mukherjee Sukhes, Ray Suman Kumar, Targeting tumor hypoxia and hypoxia-inducible factors (HIFs) for the treatment of cancer- A story of transcription factors with novel approach in molecular medicine, Current Molecular Medicine, 22, 4, 2022. Crossref

  3. Ray Suman Kumar, Mukherjee Sukhes, Directing Hypoxic Tumor Microenvironment and HIF to Illuminate Cancer Immunotherapy's Existing Prospects and Challenges in Drug Targets, Current Drug Targets, 23, 5, 2022. Crossref

  4. Ray Suman Kumar, Mukherjee Sukhes, Epigenetic Reprogramming and Landscape of Transcriptomic Interactions: Impending Therapeutic Interference of Triple-Negative Breast Cancer in Molecular Medicine, Current Molecular Medicine, 22, 10, 2022. Crossref

近刊の記事

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain