ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Critical Reviews™ in Immunology
インパクトファクター: 1.352 5年インパクトファクター: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN 印刷: 1040-8401
ISSN オンライン: 2162-6472

巻:
巻 39, 2019 巻 38, 2018 巻 37, 2017 巻 36, 2016 巻 35, 2015 巻 34, 2014 巻 33, 2013 巻 32, 2012 巻 31, 2011 巻 30, 2010 巻 29, 2009 巻 28, 2008 巻 27, 2007 巻 26, 2006 巻 25, 2005 巻 24, 2004 巻 23, 2003 巻 22, 2002 巻 21, 2001 巻 20, 2000 巻 19, 1999 巻 18, 1998 巻 17, 1997 巻 16, 1996 巻 15, 1995 巻 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v20.i5.40
24 pages

Cationic Antimicrobial Peptides and Their Multifunctional Role in the Immune System

Monisha G. Scott
Department of Microbiology and Immunology, University of British Columbia, #300—6174 University Blvd., Vancouver, British Columbia, Canada V6T 1Z3
Robert E. W. Hancock
Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, #300—6174 University Blvd., Vancouver, British Columbia, Canada V6T 1Z3

要約

Many species of life contain cationic antimicrobial peptides as components of their immune systems. The antimicrobial activity of these peptides has been studied extensively, and many peptides have a broad spectrum of activity not only against gram-negative and gram-positive bacteria but also against antibiotic-resistant bacteria, fungi, viruses, and parasites. Such cationic antimicrobial peptides can also act in synergy with host molecules, such as other cationic peptides and proteins, lysozyme, and also conventional antibiotics, to kill microbes. It has been found that certain peptides are produced in large quantities at sites of infection/inflammation, and their expression can be induced by bacterial products such as endotoxic lipopolysaccharide (LPS) and proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α). These peptides often have a high affinity for bacterial products, such as LPS, allowing them to modulate the host response and reduce the inflammatory response in sepsis. More recently, they have been found to interact directly with host cells to modulate the inflammatory process and innate defenses.


Articles with similar content:

Human Leukemia-derived Dendritic Cells: Ex-vivo Development of Specific Antileukemic Cytotoxicity
Critical Reviews™ in Immunology, Vol.18, 1998, issue 1-2
Dominique Charron, Richard E. Champlin, Aniruddha Choudhury, David F. Claxton, Antoine Toubert, Sapna Sutaria
Human Defensins and Cathelicidins in the Skin: Beyond Direct Antimicrobial Properties
Critical Reviews™ in Immunology, Vol.26, 2006, issue 6
Hideoki Ogawa, Isao Nagaoka, Francois Niyonsaba
T-Cell-Mediated Immunity and the Role of TRAIL in Sepsis-Induced Immunosuppression
Critical Reviews™ in Immunology, Vol.33, 2013, issue 1
Javier Cabrera-Perez, Thomas S. Griffith, Stephanie A. Condotta, Vladimir P. Badovinac
Improving Immunotherapy by Conditionally Enhancing MHC Class I Presentation of Tumor Antigen-Derived Peptide Epitopes
Critical Reviews™ in Immunology, Vol.27, 2007, issue 5
Ronald M. Bukowski, Mayumi Kawabe, Peter A. Cohen, James H. Finke, Amy K. Wesa, Walter J. Storkus, Christopher Herrem
The Role of Polysaccharides Derived from Medicinal Mushrooms in Cancer Treatment Programs: Current Perspectives (Review)
International Journal of Medicinal Mushrooms, Vol.5, 2003, issue 3
Richard Sullivan, John E. Smith, Neil J. Rowan