ライブラリ登録: Guest
Critical Reviews™ in Immunology

年間 6 号発行

ISSN 印刷: 1040-8401

ISSN オンライン: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Therapeutic Dendritic Cell−Based Cancer Vaccines: The State of the Art

巻 33, 発行 6, 2013, pp. 489-547
DOI: 10.1615/CritRevImmunol.2013008033
Get accessGet access

要約

Dendritic cells (DCs) are the most potent professional antigen-presenting cells, capable of initiating proper adaptive immune responses. Although tumor-infiltrating DCs are able to recognize cancer cells and uptake tumor antigens, they often have impaired functions because of the immunosuppressive tumor milieu. Therefore, DCs are targeted by therapeutic means either in vivo or ex vivo to facilitate tumor antigen presentation to T cells and induce or promote efficient antitumor immune responses in cancer patients. This immunotherapeutical approach is defined as specific active tumor immunotherapy or therapeutic cancer vaccination. In this review we briefly discuss general aspects of DC biology, followed by a thorough description of the current knowledge and optimization trends of DC vaccine production ex vivo, including various approaches for the induction of proper DC maturation and efficient loading with tumor antigens. We also discuss critical clinical aspects of DC vaccine application in cancer patients, including protocols of administration (routes and regimens), individualization of tumor immunotherapy, prediction and proper evaluation of immune and clinical responses to immunotherapy, and the critical role of combining tumor immunotherapy with other cancer treatment strategies to achieve maximal therapeutic effects.

によって引用された
  1. Kandušer Maša, Ušaj Marko, Cell electrofusion: past and future perspectives for antibody production and cancer cell vaccines, Expert Opinion on Drug Delivery, 11, 12, 2014. Crossref

  2. Bhanumathy Kalpana, Zhang Bei, Ahmed Khawaja, Qureshi Mabood, Xie Yufeng, Tao Min, Tan Xin, Xiang Jim, Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation, International Journal of Molecular Sciences, 15, 4, 2014. Crossref

  3. Antoniu Sabina Antonela, Dimofte Gabriel, Ungureanu Didona, Immune therapies for malignant mesothelioma, Expert Review of Anticancer Therapy, 14, 8, 2014. Crossref

  4. Strioga Marius M., Darinskas Adas, Pasukoniene Vita, Mlynska Agata, Ostapenko Valerijus, Schijns Virgil, Xenogeneic therapeutic cancer vaccines as breakers of immune tolerance for clinical application: To use or not to use?, Vaccine, 32, 32, 2014. Crossref

  5. Chiu Flora W Y, Bagci Hakan, Fisher Amanda G, deMello Andrew J, Elvira Katherine S, A microfluidic toolbox for cell fusion, Journal of Chemical Technology & Biotechnology, 91, 1, 2016. Crossref

  6. Datta Jashodeep, Berk Erik, Cintolo Jessica A., Xu Shuwen, Roses Robert E., Czerniecki Brian J., Rationale for a Multimodality Strategy to Enhance the Efficacy of Dendritic Cell-Based Cancer Immunotherapy, Frontiers in Immunology, 6, 2015. Crossref

  7. Kazemi Tohid, Younesi Vahid, Jadidi-Niaragh Farhad, Yousefi Mehdi, Immunotherapeutic approaches for cancer therapy: An updated review, Artificial Cells, Nanomedicine, and Biotechnology, 2015. Crossref

  8. Meng Lijun, Bai Zhenjiang, He Shan, Mochizuki Kazuhiro, Liu Yongnian, Purushe Janaki, Sun Hongxing, Wang Jian, Yagita Hideo, Mineishi Shin, Fung Henry, Yanik Gregory A., Caricchio Roberto, Fan Xiaoxuan, Crisalli Lisa M., Hexner Elizabeth O., Reshef Ran, Zhang Yanyun, Zhang Yi, The Notch Ligand DLL4 Defines a Capability of Human Dendritic Cells in Regulating Th1 and Th17 Differentiation, The Journal of Immunology, 196, 3, 2016. Crossref

  9. Michalek Jaroslav, Hezova Renata, Turanek-Knötigova Pavlina, Gabkova Jana, Strioga Marius, Lubitz Werner, Kudela Pavol, Oncolysate-loaded Escherichia coli bacterial ghosts enhance the stimulatory capacity of human dendritic cells, Cancer Immunology, Immunotherapy, 66, 2, 2017. Crossref

  10. Meng Lijun, Hu Shaoyan, Wang Jian, He Shan, Zhang Yi, DLL4+ dendritic cells: Key regulators of Notch Signaling in effector T cell responses, Pharmacological Research, 113, 2016. Crossref

  11. Tian Yuanyuan, Meng Lijun, Zhang Yi, Epigenetic Regulation of Dendritic Cell Development and Function, The Cancer Journal, 23, 5, 2017. Crossref

  12. Manzo Emiliano, Cutignano Adele, Pagano Dario, Gallo Carmela, Barra Giusi, Nuzzo Genoveffa, Sansone Clementina, Ianora Adrianna, Urbanek Konrad, Fenoglio Daniela, Ferrera Francesca, Bernardi Cinzia, Parodi Alessia, Pasquale Giuseppe, Leonardi Antonio, Filaci Gilberto, De Palma Raffaele, Fontana Angelo, A new marine-derived sulfoglycolipid triggers dendritic cell activation and immune adjuvant response, Scientific Reports, 7, 1, 2017. Crossref

  13. Kraśko Jan Aleksander, Žilionytė Karolina, Darinskas Adas, Strioga Marius, Rjabceva Svetlana, Zalutsky Iosif, Derevyanko Marina, Kulchitsky Vladimir, Lubitz Werner, Kudela Pavol, Miseikyte-Kaubriene Edita, Karaman Olha, Didenko Hennadii, Potebnya Hryhorii, Chekhun Vasyl, Pašukonienė Vita, Bacterial ghosts as adjuvants in syngeneic tumour cell lysate-based anticancer vaccination in a murine lung carcinoma model, Oncology Reports, 37, 1, 2017. Crossref

  14. Liu Linying, Mao Zheng, Zhang Jianhua, Liu Na, Liu Qing Huo, Aegerter Christof Markus, The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field, PLOS ONE, 11, 7, 2016. Crossref

  15. Strioga M.M., Dobrovolskiene N.T., Dendritic Cells as Targets of Vaccines and Adjuvants, in Immunopotentiators in Modern Vaccines, 2017. Crossref

  16. Fekete Natalie, Béland Ariane V., Campbell Katie, Clark Sarah L., Hoesli Corinne A., Bags versus flasks: a comparison of cell culture systems for the production of dendritic cell–based immunotherapies, Transfusion, 58, 7, 2018. Crossref

  17. Dobrovolskienė N., Pašukonienė V., Darinskas A., Kraśko J.A., Žilionytė K., Mlynska A., Gudlevičienė Ž., Mišeikytė-Kaubrienė E., Schijns V., Lubitz W., Kudela P., Strioga M., Tumor lysate-loaded Bacterial Ghosts as a tool for optimized production of therapeutic dendritic cell-based cancer vaccines, Vaccine, 36, 29, 2018. Crossref

  18. Wu Xuejie, Xu Feng, Liu Jinliang, Wang Guiqiang, Comparative study of dendritic cells matured by using IL-1β, IL-6, TNF-α and prostaglandins E2 for different time span, Experimental and Therapeutic Medicine, 14, 2, 2017. Crossref

  19. Tel-Karthaus Nina, Kers-Rebel Esther D., Looman Maaike W., Ichinose Hiroshi, de Vries Carlie J., Ansems Marleen, Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function, Frontiers in Immunology, 9, 2018. Crossref

  20. Wołkow Paweł P., Gębska Anna, Korbut Ryszard, In vitro maturation of monocyte-derived dendritic cells results in two populations of cells with different surface marker expression, independently of applied concentration of interleukin-4, International Immunopharmacology, 57, 2018. Crossref

  21. Ušaj Marko, Kandušer Maša, Modified Adherence Method (MAM) for Electrofusion of Anchorage-Dependent Cells, in Cell Fusion, 1313, 2015. Crossref

  22. Yu Hongshuang, Tian Yuanyuan, Wang Ying, Mineishi Shin, Zhang Yi, Dendritic Cell Regulation of Graft-Vs.-Host Disease: Immunostimulation and Tolerance, Frontiers in Immunology, 10, 2019. Crossref

  23. Garnica Omar, Das Kishore, Devasundaram Santhi, Dhandayuthapani Subramanian, Enhanced delivery of Mycobacterium tuberculosis antigens to antigen presenting cells using RVG peptide, Tuberculosis, 116, 2019. Crossref

  24. Silva Mariana, Silva Zélia, Marques Graça, Ferro Tiago, Gonçalves Márcia, Monteiro Mauro, van Vliet Sandra J., Mohr Elodie, Lino Andreia C., Fernandes Alexandra R., Lima Flávia A., van Kooyk Yvette, Matos Teresa, Tadokoro Carlos E., Videira Paula A., Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses, Oncotarget, 7, 27, 2106. Crossref

  25. Kraśko Jan , Žilionytė Karolina , Darinskas Adas , Dobrovolskienė Neringa , Mlynska Agata , Riabceva Svetlana , Zalutsky Iosif , Derevyanko Marina , Kulchitsky Vladimir , Karaman Olga , Fedosova Natalia , Symchych Tatiana , Didenko Gennady , Chekhun Vasyl , Strioga Marius , Pašukonienė Vita , Post-operative unadjuvanted therapeutic xenovaccination with chicken whole embryo vaccine suppresses distant micrometastases and prolongs survival in a murine Lewis lung carcinoma model, Oncology Letters, 2018. Crossref

  26. Brennick Cory A, George Mariam M, Corwin William L, Srivastava Pramod K, Ebrahimi-Nik Hakimeh, Neoepitopes as cancer immunotherapy targets: key challenges and opportunities, Immunotherapy, 9, 4, 2017. Crossref

  27. Chesson Charles B, Zloza Andrew, Nanoparticles: augmenting tumor antigen presentation for vaccine and immunotherapy treatments of cancer, Nanomedicine, 12, 23, 2017. Crossref

  28. Ruan Shaobo, Greenberg Zachary, Pan Xiaoshu, Zhuang Pei, Erwin Nina, He Mei, Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy, Advanced Healthcare Materials, 11, 5, 2022. Crossref

  29. Zakrzewski Johannes L, van den Brink Marcel R M, Hubbell Jeffrey A, Overcoming immunological barriers in regenerative medicine, Nature Biotechnology, 32, 8, 2014. Crossref

  30. Li Chengxiang, Ke Qiang, Yao Cheng, Yao Chenguo, Mi Yan, Wu Meng, Ge Liangpeng, Comparison of Bipolar and Unipolar Pulses in Cell Electrofusion: Simulation and Experimental Research, IEEE Transactions on Biomedical Engineering, 66, 5, 2019. Crossref

  31. Tőke E R, Lőrincz O, Csiszovszki Z, Somogyi E, Felföldi G, Molnár L, Szipőcs R, Kolonics A, Malissen B, Lori F, Trocio J, Bakare N, Horkay F, Romani N, Tripp C H, Stoitzner P, Lisziewicz J, Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes, Gene Therapy, 21, 6, 2014. Crossref

  32. Tian Yuanyuan, Yu Hongshuang, Hu Shaoyan, Zhang Yi, Dendritic Cell-Regulated T Cell Immunity and Tolerance against Acute Myeloid Leukemia, in Advanced Concepts in Human Immunology: Prospects for Disease Control, 2020. Crossref

近刊の記事

Identification of key chondrocyte apoptosis-related genes in osteoarthritis based on weighted gene co-expression network analysis and experimental verification Wei Wang, Junyi Hong, Tianyi Cao, Fusheng Ye, Junwei Gao, Shumei Qin Anoikis and Mitophagy-Related Gene Signature for Predicting the Survival and Tumor Cell Progression in Colon Cancer Jian Shen, Minzhe Li Exploring the mechanism of Isoforskolin against asthma based on network pharmacology and experimental verification Yan Fang, Shibo Sun, Chuang Xiao, Min Li, Yuanyuan Zheng, Anju Zu, Zhuang Luo Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain