ライブラリ登録: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

年間 6 号発行

ISSN 印刷: 0743-4863

ISSN オンライン: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Exploring Therapeutic Advancement and Strategies Associated with Drug Delivery in Brain-Tumor Targeting

巻 38, 発行 2, 2021, pp. 1-25
DOI: 10.1615/CritRevTherDrugCarrierSyst.2020033839
Get accessGet access

要約

Brain tumors pose a serious burden to health care because the cancers are usually incurable, despite advancements in treatment strategies including surgery, radiotherapy, and chemotherapy. Most studies report that specific drugs are effective in vitro, but many lose their therapeutic value in clinical settings. Maintaining therapeutic drug concentrations as an agent reaches a cancer target is the efficacy prerequisite for any form of treatment. However, in the case of brain tumors, the blood-brain barrier (BBB) acts to physically and physiologically block the drug, which complicates treatment options. In addition, strategies are limited by a number of factors such as difficulties that are associated with targeting tumor cells. The therapeutic potential of targeted drug delivery as an alternative to current strategies is gaining significant ground, with many studies highlighting its efficacy and compatibility in overcoming the BBB before reaching its final target in brain. In this review, we briefly describe basic physiology associated with the BBB and how modern science is taking advantage of physiological processes to deliver anticancer agents to brain. We also summarize different modes of drug delivery and highlight how nanoparticles as drug-delivery vehicles are used for drug transport in brain tumors as well as different types of surface modification that are used to increase target potential.

参考
  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.

  2. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):7.

  3. Singh A, Chokriwal A, Sharma MM, Jain D, Saxena J, Stephen BJ. Therapeutic role and drug delivery potential of neuroinflammation as a target in neurodegenerative disorders. ACS Chem Neurosci. 2017;8(8):1645-55.

  4. Lazar LF, Olteanu ED, Iuga R, Burz C, Achim M, Clichici S, Tefas LR, Nenu I, Tudor D, Baldea I, Filip GA. Solid lipid nanoparticles: Vital characteristics and prospective applications in cancer treatment. Crit Rev Ther Drug Carrier Syst. 2019;36(6):537-81.

  5. Kristensen M, Brodin B. Routes for drug translocation across the blood-brain barrier: Exploiting peptides as delivery vectors. J Pharm Sci. 2017;106(9):2326-34.

  6. Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzing efflux transport at the blood-brain barrier. J Pharmacol Exp Ther. 1996;277(3):1550-9.

  7. Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290-303.

  8. Wei X, Chen X, Ying M, Lu W. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B. 2014;4(3):193-201.

  9. Herve F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10(3):455-72.

  10. Lu W. Adsorptive-mediated brain delivery systems. Curr Pharm Biotechnol. 2012;13(12):2340-8.

  11. Zhu X, Jin K, Huang Y, Pang Z. Brain drug delivery by adsorption-mediated transcytosis. In: Gao H, Gao X, editors. Brain targeted drug delivery system. Cambridge, MA: Academic Press; 2019. p. 159-83.

  12. Abhinav A, Saikat M, Himanshu A, Subrata M, Govind PA. Cationized albumin conjugated solid lipid nanoparticles as vectors for brain delivery of an anti-cancer drug. Curr Nanosci. 2011; 7(1):71-80.

  13. Kesharwani P, Jain A, Jain A, Jain AK, Garg NK, Tekade RK, Raj Singh TR, Iyer AK. Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. RSC Advances. 2016;6(92):89040-50.

  14. Lammerts van Bueren JJ, Bleeker WK, Bogh HO, Houtkamp M, Schuurman J, van de Winkel JG, Parren PW. Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor: Implications for the mechanisms of action. Cancer Res. 2006;66(15):7630-8.

  15. Pardridge WM, Boado RJ, Patrick DJ, Ka-Wai Hui E, Lu JZ. Blood-brain barrier transport, plasma pharmacokinetics, and neuropathology following chronic treatment of the rhesus monkey with a brain penetrating humanized monoclonal antibody against the human transferrin receptor. Mol Pharm. 2018;15(11):5207-16.

  16. Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613-31.

  17. Tamai I, Tsuji A. Transporter-mediated permeation of drugs across the blood-brain barrier. J Pharm Sci. 2000;89(11):1371-88.

  18. Khan NU, Miao T, Ju X, Guo Q, Han L. Carrier-mediated transportation through BBB. In: Gao H, Gao X, editors. Brain targeted drug delivery system. Cambridge, MA: Academic Press; 2019. p. 129-58.

  19. Jiang X, Xin H, Ren Q, Gu J, Zhu L, Du F, Feng C, Xie Y, Sha X, Fang X. Nanoparticles of 2-deoxy-D-glucose functionalized poly(ethylene glycol)-co-poly(trimethylene carbonate) for dual-targeted drug delivery in glioma treatment. Biomaterials. 2014;35(1):518-29.

  20. Navyatha B, Nara S. Theranostic nanostructures for ovarian cancer. Crit Rev Ther Drug Carrier Syst. 2019;36(4):305-71.

  21. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64-83.

  22. Yun L, Shang H, Gu H, Zhang N. Polymeric micelles for the treatment of rheumatoid arthritis. Crit Rev Ther Drug Carrier Syst. 2019;36(3):219-38.

  23. Castro NR, Pinto CSC, Santos EP, Mansur CRE. Hybrid vesicular nanosystems based on lipids and polymers applied in therapy, theranostics, and cosmetics. Crit Rev Ther Drug Carrier Syst. 2020;37(3):271-303.

  24. Manjappa AS, Kumbhar PS, Patil AB, Disouza JI, Patravale VB. Polymeric mixed micelles: Improving the anticancer efficacy of single-copolymer micelles. Crit Rev Ther Drug Carrier Syst. 2019;36(1):1-58.

  25. Householder KT, DiPerna DM, Chung EP, Wohlleb GM, Dhruv HD, Berens ME, Sirianni RW. Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm. 2015;479(2):374-80.

  26. Cirpanli Y, Bilensoy E, Dogan AL, Calis S. Development of polymeric and cyclodextrin nanoparticles for camptothecin delivery. J Control Release. 2010;148(1):e21-3.

  27. Sawyer AJ, Saucier-Sawyer JK, Booth CJ, Liu J, Patel T, Piepmeier JM, Saltzman WM. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res. 2011;1(1):34-42.

  28. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Appl Mater Interfaces. 2016;8(47):32159-69.

  29. Pereverzeva E, Treschalin I, Treschalin M, Arantseva D, Ermolenko Y, Kumskova N, Maksimenko O, Balabanyan V, Kreuter J, Gelperina S. Toxicological study of doxorubicin-loaded PLGA nanoparticles for the treatment of glioblastoma. Int J Pharm. 2019;554:161-78.

  30. Lei C, Davoodi P, Zhan W, Chow PK-H, Wang C-H. Development of nanoparticles for drug delivery to brain tumor: The effect of surface materials on penetration into brain tissue. J Pharm Sci. 2019;108(5):1736-45.

  31. Han L, Kong DK, Zheng MQ, Murikinati S, Ma C, Yuan P, Li L, Tian D, Cai Q, Ye C, Holden D, Park JH, Gao X, Thomas JL, Grutzendler J, Carson RE, Huang Y, Piepmeier JM, Zhou J. Increased nanoparticle delivery to brain tumors by autocatalytic priming for improved treatment and imaging. ACS Nano. 2016;10(4):4209-18.

  32. Chokriwal A, Stephen BJ, Jain D, Singh A. Simplistic approach in extracellular synthesis of silver nanoparticles via bioreducing potential of Planococcus plakortidis strain BGCC-51 isolated from dye industry effluent soil. IET Nanobiotechnol. 2018;12(5):613-8.

  33. Mangla B, Javed S, Kohli K, Ahsan A, Ahsan W. Reassessment of therapeutic applications of carbon nanotubes: A majestic and futuristic drug carrier. Crit Rev Ther Drug Carrier Syst. 2020;37(4):331-73.

  34. Stephen BJ, Suchanti S, Mishra R, Singh A. Cancer nanotechnology in medicine: A promising approach for cancer detection and diagnosis. Crit Rev Ther Drug Carrier Syst. 2020;37(4):375-405.

  35. Connor DM, Broome A-M. Gold nanoparticles for the delivery of cancer therapeutics. In: Broome A-M, editor. Advances in Cancer Research. Cambridge, MA: Academic Press; 2018. p. 163-84.

  36. Ruan S, Hu C, Tang X, Cun X, Xiao W, Shi K, He Q, Gao H. Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation. ACS Nano. 2016;10(11):10086-98.

  37. Meola A, Rao J, Chaudhary N, Sharma M, Chang SD. Gold nanoparticles for brain tumor imaging: A systematic review. Front Neurol. 2018;9:328.

  38. Jain A, Tiwari A, Verma A, Saraf S, Jain SK. Combination cancer therapy using multifunctional liposomes. Crit Rev Ther Drug Carrier Syst. 2020;37(2):105-34.

  39. Vieira DB, Gamarra LF. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. Int J Mol Med. 2016;11:5381-414.

  40. Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewicz KS. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 2004;64(7):2572-9.

  41. Voigt N, Henrich-Noack P, Kockentiedt S, Hintz W, Tomas J, Sabel BA. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Eur J Pharm Biopharm. 2014;87(1):19-29.

  42. Mastorakos P, Zhang C, Song E, Kim YE, Park HW, Berry S, Choi WK, Hanes J, Suk JS. Biodegradable brain-penetrating DNA nanocomplexes and their use to treat malignant brain tumors. J Control Release. 2017;262:37-46.

  43. King AR, Corso CD, Chen EM, Song E, Bongiorni P, Chen Z, Sundaram RK, Bindra RS, Saltzman WM. Local DNA repair inhibition for sustained radiosensitization of high-grade gliomas. Mol Cancer Ther. 2017;16(8):1456-69.

  44. Chen EM, Quijano AR, Seo YE, Jackson C, Josowitz AD, Noorbakhsh S, Merlettini A, Sundaram RK, Focarete ML, Jiang Z, Bindra RS, Saltzman WM. Biodegradable PEG-poly(ro-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials. 2018;178:193-203.

  45. Ibarra LE, Porcal GV, Macor LP, Ponzio RA, Spada RM, Lorente C, Chesta CA, Rivarola VA, Palacios RE. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine. 2018;13(6):605-24.

  46. Huang N, Cheng S, Zhang X, Tian Q, Pi J, Tang J, Huang Q, Wang F, Chen J, Xie Z, Xu Z, Chen W, Zheng H, Cheng Y. Efficacy of NGR peptide-modified PEGylated quantum dots for crossing the blood-brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomedicine. 2017;13(1):83-93.

  47. Shi J, Hou S, Huang J, Wang S, Huan W, Huang C, Liu X, Jiang R, Qian W, Lu J, Wang X, Shi W, Huang R, Chen J. An MSN-PEG-IP drug delivery system and IL13Ra2 as targeted therapy for glioma. Nanoscale. 2017;9(26):8970-81.

  48. Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B, Singh S, Singh U, Dash D, Pandey BL, Muthu MS. Transferrin liposomes of docetaxel for brain-targeted cancer applications: Formulation and brain theranostics. Drug Deliv. 2016;23(4):1261-71.

  49. Zou L, Tao Y, Payne G, Do L, Thomas T, Rodriguez J, Dou H. Targeted delivery of nano-PTX to the brain tumor-associated macrophages. Oncotarget. 2017;8(4):6564-78.

  50. Zhang G, Li X, Liao Q, Liu Y, Xi K, Huang W, Jia X. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat Commun. 2018;9(1):2785.

  51. Cole AJ, David AE, Wang J, Galban CJ, Yang VC. Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials. 2011;32(26):6291-301.

  52. Falanga AP, Melone P, Cagliani R, Borbone N. Design, synthesis and characterization of novel co-polymers decorated with peptides for the selective nanoparticle transport across the cerebral endothelium. Molecules. 2018;23(7):1665.

  53. Yang C, Wu T, Qi Y, Zhang Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics. 2018;8(2):464-85.

  54. Sonali, Agrawal P, Singh RP, Rajesh CV, Singh S, Vijayakumar MR, Pandey BL, Muthu MS. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: Preparation, characterization and brain distribution in rats. Drug Deliv. 2016;23(5):1788-98.

  55. Vijayakumar MR, Kosuru R, Singh SK, Prasad CB, Narayan G, Muthu MS, Singh S. Resveratrol loaded PLGA: D-a-tocopheryl polyethylene glycol 1000 succinate blend nanoparticles for brain cancer therapy. RSC Advances. 2016;6(78):74254-68.

  56. Alexander-Bryant AA, Vanden Berg-Foels WS, Wen X. Bioengineering strategies for designing targeted cancer therapies. Adv Cancer Res. 2013;118:1-59.

  57. Dong H, Jin M, Liu Z, Xiong H, Qiu X, Zhang W, Guo Z. In vitro and in vivo brain-targeting chemo-photothermal therapy using graphene oxide conjugated with transferrin for gliomas. Lasers Med Sci. 2016;31(6):1123-31.

  58. Lakkadwala S, Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nano-medicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J Pharm Sci. 2018;107(11):2902-13.

  59. Li S, Amat D, Peng Z, Vanni S, Raskin S, De Angulo G, Othman AM, Graham RM, Leblanc RM. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale. 2016;8(37):16662-9.

  60. Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar-Toupkanlou F, Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res A. 2017;105(10):2851-64.

  61. Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur J Pharmacol. 2013;718(1-3):41-7.

  62. Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89-101.

  63. Song XL, Liu S, Jiang Y, Gu LY, Xiao Y, Wang X, Cheng L, Li XT. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG2000-transferrin in treatment of brain glioma. Eur J Pharm Sci. 2017;96:129-40.

  64. Ruan S, Qin L, Xiao W, Hu C, Zhou Y, Wang R, Sun X, Yu W, He Q, Gao H. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv Funct Mater. 2018;28(30):1802227.

  65. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome AM. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782-90.

  66. Elzoghby AO, Freag MS, Elkhodairy KA. Biopolymeric nanoparticles for targeted drug delivery to brain tumors. In: Kesharwani P, Gupta U, editors. Nanotechnology-based targeted drug delivery systems for brain tumors. Cambridge, MA: Academic Press; 2018. p. 169-90.

  67. Kumari S, Ahsan SM. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Sci Rep. 2017;7(1):6602.

  68. Li H, Tong Y, Bai L, Ye L, Zhong L, Duan X, Zhu Y. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol. 2018;107(Pt A):204-11.

  69. Mo X, Zheng Z, He Y, Zhong H, Kang X, Shi M, Liu T, Jiao Z, Huang Y. Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J Control Release. 2018;287:12-23.

  70. Zhang J, Xiao X, Zhu J, Gao Z, Lai X, Zhu X, Mao G. Lactoferrin- and RGD-comodified, temozolomide and vincristine-coloaded nanostructured lipid carriers for gliomatosis cerebri combination therapy. Int J Nanomed. 2018;13:3039-51.

  71. Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine. 2018;13(20):2579-96.

  72. Fang JH, Chiu TL, Huang WC, Lai YH, Hu SH, Chen YY, Chen SY. Dual-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with self-responsive fluorescence/magnetic resonance imaging for in vivo brain tumor therapy. Adv Healthcare Mater. 2016;5(6):688-95.

  73. Song MM, Xu HL, Liang JX, Xiang HH, Liu R, Shen YX. Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Mater Sci Eng C Mater Biol Appl. 2017;77:904-11.

  74. Xu Y, Asghar S, Yang L, Li H, Wang Z, Ping Q, Xiao Y. Lactoferrin-coated polysaccharide nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG for treating brain glioma. Carbohydr Polym. 2017;157:419-28.

  75. Lim LY, Koh PY, Somani S, Al Robaian M, Karim R, Yean YL, Mitchell J, Tate RJ, Edrada-Ebel R, Blatchford DR, Mullin M, Dufes C. Tumor regression following intravenous administration of lactoferrin- and lactoferricin-bearing dendriplexes. Nanomedicine. 2015;11(6):1445-54.

  76. Kuo YC, Cheng SJ. Brain targeted delivery of carmustine using solid lipid nanoparticles modified with tamoxifen and lactoferrin for antitumor proliferation. Int J Pharm. 2016;499(1-2):10-9.

  77. Singh I, Swami R, Pooja D, Jeengar MK, Khan W, Sistla R. Lactoferrin bioconjugated solid lipid nanoparticles: A new drug delivery system for potential brain targeting. J Drug Target. 2016;24(3):212-23.

  78. Geldenhuys W, Mbimba T, Bui T, Harrison K, Sutariya V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J Drug Target. 2011;19(9):837-45.

  79. Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar M-A, Davaran S, Danafar H, Kheiri Manjili H. Glutathione (GSH) peptide conjugated magnetic nanoparticles as blood-brain barrier shuttle for MRI-monitored brain delivery of paclitaxel. ACS Biomater Sci Eng. 2019;5(4):1677-85.

  80. Geldenhuys W, Wehrung D, Groshev A, Hirani A, Sutariya V. Brain-targeted delivery of doxorubicinusing glutathione-coated nanoparticles for brain cancers. Pharm Dev Technol. 2015;20(4):497-506.

  81. Grover A, Hirani A, Pathak Y, Sutariya V. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer. AAPS PharmSciTech. 2014;15(6):1562-8.

  82. Steckiewicz KP, Barcinska E, Sobczak K, Tomczyk E, Wojcik M, Inkielewicz-Stepniak I. Assessment of anti-tumor potential and safety of application of glutathione stabilized gold nanoparticles conjugated with chemotherapeutics. Int J Med Sci. 2020;17(6):824-33.

  83. Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol. 2016;14:27.

  84. Shi X-X, Miao W-M, Pang D-W, Wu J-S, Tong Q-S, Li J-X, Luo J-Q, Li W-Y, Du J-Z, Wang J. Angiopep-2 conjugated nanoparticles loaded with doxorubicin for the treatment of primary central nervous system lymphoma. Biomater Sci. 2020;8(5):1290-7.

  85. Kuo Y-C, Chao I-W. Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnol Prog. 2016;32(2):480-90.

  86. Pinzon-Daza M, Garzon R, Couraud P, Romero I, Weksler B, Ghigo D, Bosia A, Riganti C. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells. Br J Pharmacol. 2012;167(7):1431-47.

  87. Ji X, Wang H, Chen Y, Zhou J, Liu Y. Recombinant expressing angiopep-2 fused anti-VEGF single chain Fab (scFab) could cross blood-brain barrier and target glioma. AMB Express. 2019;9(1):165.

  88. Ganger S, Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics. 2018;10(3):116.

  89. Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P. Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol. 2009;87(4):212-51.

  90. Liu HL, Fan CH, Ting CY, Yeh CK. Combining microbubbles and ultrasound for drug delivery to brain tumors: Current progress and overview. Theranostics. 2014;4(4):432-44.

  91. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine. 2008;3(5):703-17.

  92. Dong X. Current strategies for brain drug delivery. Theranostics. 2018;8(6):1481-93.

  93. Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery-a general review. Expert Opin Drug Deliv. 2004;1(1):37-56.

  94. Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014;72:94-109.

  95. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220(3):640-6.

  96. Liu HL, Hua MY, Chen PY, Chu PC, Pan CH, Yang HW, Huang CY, Wang JJ, Yen TC, Wei KC. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255(2):415-25.

  97. McDannold N, Arvanitis CD, Vykhodtseva N, Livingstone MS. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: Safety and efficacy evaluation in rhesus macaques. Cancer Res. 2012;72(14):3652-63.

  98. Carpentier A, Canney M, Vignot A, Reina V, Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon JY, Capelle L, Cornu P, Sanson M, Hoang-Xuan K, Delattre JY, Idbaih A. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med. 2016;8(343):343re2.

  99. Djupesland PG, Messina JC, Mahmoud RA. The nasal approach to delivering treatment for brain diseases: An anatomic, physiologic, and delivery technology overview. Ther Deliv. 2014;5(6):709-33.

  100. van Woensel M, Wauthoz N, Rosiere R, Amighi K, Mathieu V, Lefranc F, van Gool SW, de Vleeschouwer S. Formulations for intranasal delivery of pharmacological agents to combat brain disease: A new opportunity to tackle GBM? Cancers. 2013;5(3):1020-48.

  101. Dhas NL, Kudarha RR, Mehta TA. Intranasal delivery of nanotherapeutics/nanobiotherapeutics for the treatment of Alzheimer's disease: A proficient approach. Crit Rev Ther Drug Carrier Syst. 2019;36(5):373-447.

  102. Godfrey L, Iannitelli A, Garrett NL, Moger J, Imbert I, King T, Porreca F, Soundararajan R, Lalatsa A, Schatzlein AG, Uchegbu IF. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. J Control Release. 2018;270:135-44.

  103. Balyasnikova IV, Prasol MS, Ferguson SD, Han Y, Ahmed AU, Gutova M, Tobias AL, Mustafi D, Rincon E, Zhang L, Aboody KS, Lesniak MS. Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Mol Ther. 2014;22(1):140-8.

  104. Wang W, Swenson S, Cho HY, Hofman FM, Schonthal AH, Chen TC. Efficient brain targeting and therapeutic intracranial activity of bortezomib through intranasal co-delivery with NE0100 in rodent glioblastoma models. J Neurosurg. 2019:1-9. doi: 10.3171/2018.11.JNS181161.

  105. Hashizume R, Ozawa T, Gryaznov SM, Bollen AW, Lamborn KR, Frey WH 2nd, Deen DF. New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro Oncol. 2008;10(2):112-20.

  106. Erdo F, Bors LA, Farkas D, Bajza A, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155-70.

によって引用された
  1. Suvarna Vasanti, Sawant Niserga, Desai Namita, A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics, Critical Reviews™ in Therapeutic Drug Carrier Systems, 40, 2, 2023. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain