ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Composites: Mechanics, Computations, Applications: An International Journal
ESCI SJR: 0.193 SNIP: 0.497 CiteScore™: 0.39

ISSN 印刷: 2152-2057
ISSN オンライン: 2152-2073

Composites: Mechanics, Computations, Applications: An International Journal

DOI: 10.1615/CompMechComputApplIntJ.v6.i4.50
pages 321-338

PARTICLE SWARM OPTIMIZATION-BASED NEURAL NETWORK FOR PREDICTING FATIGUE STRENGTH IN COMPOSITE LAMINATES OF WIND TURBINE BLADES

Khaled Ziane
Laboratoire d'Ingénierie de la Sécurité Industrielle et du Développement Durable LISIDD, IMSI, Université d'Oran, B.P N°5, Route de l'aéroport 31000 Es-Sénia, Oran, Algérie
Soraya Zebirate
Laboratoire SCAMRE, ENPO; Laboratoire d'Ingénierie de la Sécurité Industrielle et du Développement Durable LISIDD, IMSI, Université d'Oran, B.P N°5, Route de l'aéroport 31000 Es-Sénia, Oran, Algérie
Adel Zaitri
Materials Science and Informatics Laboratory MSIL, University of Djelfa, P. BOX N°3117, Road of Moudjbara 17000, Djelfa, Algeria

要約

In this paper, the fatigue strength in multidirectional (MD)/unidirectional (UD) composite laminates of wind turbine blades is predicted by using particle swarm optimization-based artificial neural networks (PSO-ANN). In the PSO-ANN approach used in this work, the objective function was assessed using the mean square error (MSE) computed as the squared difference between the predicted values and the target values for a number of training set samples. Different materials based on different reinforcing fabrics and resins are compared in terms of the maximum tensile fatigue stress. Tension–tension constant amplitude fatigue loads were applied to thermoset materials including glass-fiber/epoxy, polyester and vinyl esters. All materials were treated in closed molds with resin infusion process, which were molded into their final dogbone shape without machining. The results show that the PSO-ANN can provide accurate fatigue strength prediction for different MD/UD composite laminates under different values of fiber orientation.


Articles with similar content:

VIBRATIONAL ANALYSIS OF HYBRID FABRIC-REINFORCED POLYMER MATRIX CURVED COMPOSITE BEAMS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 3
Kunj Jain, B. Santosh Kumar, S. Ayyappan, Gopalan Venkatachalam, S. Vimalanand
SIMULATIONS OF AIR PERMEABILITY OF MULTILAYER TEXTILES BY THE COMPUTATIONAL FLUID DYNAMICS
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 6
Izabella Krucinska, Adam K. Puszkarz
NUMERICAL CHARACTERIZATION OF ACRYLIC POLYMER UNDER QUASI-STATIC AND DYNAMIC LOADING BY IMPLEMENTING VISCOELASTIC MATERIAL MODEL
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 3
Uzair Ahmed Dar
A NEURAL NETWORK SYSTEM FOR PREDICTION OF THERMAL RESISTANCE OF KNIT FABRICS
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 1
Faten Fayala, Hamza Alibi, Abdelmajid Jemni, Xianyi Zeng
IDENTIFICATION AND PROBABILISTIC MODELING OF MESOCRACK INITIATIONS IN 304L STAINLESS STEEL
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 4
L. Vincent, F. Hild, J. Rupil, Stephane Roux