ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Composites: Mechanics, Computations, Applications: An International Journal
ESCI SJR: 0.354 SNIP: 0.655 CiteScore™: 1.2

ISSN 印刷: 2152-2057
ISSN オンライン: 2152-2073

Composites: Mechanics, Computations, Applications: An International Journal

DOI: 10.1615/CompMechComputApplIntJ.2020034460
pages 187-207

A SIMPLE MIXED FINITE ELEMENT MODEL FOR COMPOSITE BEAMS WITH PARTIAL INTERACTION

Daniele Baraldi
Department of Architecture and Arts, Università IUAV di Venezia, Terese, Dorsoduro 2206, 30123, Venice, Italy

要約

A simple and effective mixed finite element model is proposed for studying the behavior of beams with composite section, with particular reference to two-layer beams with partial interaction, namely, steel-concrete, timber-concrete, and two-layer laminated glass beams. The model is based on a mixed variational formulation, which as independent fields assumes the displacements of each layer and the shear stresses transmitted by the connections between the layers. The effectiveness of the model, which automatically satisfies the Newmark kinematic hypothesis for a composite beam, is evaluated by performing a set of numerical tests and comparing results with existing analytical and numerical solutions; furthermore, the convergence of the model to the well-known layered and monolithic beam behavior is shown. Numerical tests are performed in the linear elastic field, but the possible model extensions to the field of material and geometric nonlinearity are highlighted, together with a further refinement of the numerical model.

参考

  1. Aribert, J.M., Labib, A.G., and Rival, J.C., Etude Numerique et Experimental de L'influence D'une Connexion Partielle sur le Comportement de Poutres Mixtes, Communication presentee aux journees AFPC. Mars. Theme 1, sous-theme, 1983.

  2. Arizumi, Y., Hamada, S., and Kajita, T., Elastic-Plastic Analysis of Composite Beams with Incomplete Interaction by Finite Element Method, Compos. Struct., vol. 14, pp. 5-6, 1981.

  3. Ayoub, A. and Filippou, F.C., Mixed Formulation of Nonlinear Steel-Concrete Composite Beam Element, J. Struct. Eng. ASCE, vol. 126, no. 3, pp. 371-381, 2000.

  4. Baraldi, D. and Tullini, N., In-Plane Bending of Timoshenko Beams in Bilateral Frictionless Contact with an Elastic Half-Space Using a Coupled FE-BIE Method, Eng. Anal. Boundary Elem., vol. 97, pp. 114-130, 2018.

  5. Baraldi, D., A Simple Mixed Finite Element Model for Laminated Glass Beams, Compos. Struct., vol. 194, pp. 611-623, 2018.

  6. Baraldi, D., Static and Buckling Analyses of Thin Beams on an Elastic Layer, Compos. Mech. Comput. Appl. Int. J., vol. 10, no. 3, pp. 187-211, 2019.

  7. Dall'Asta, A. and Zona, A., Non-Linear Analysis of Composite Beams by a Displacement Approach, Comput. Struct., vol. 80, nos. 27-30, pp. 2217-2228, 2002.

  8. Dall'Asta, A. and Zona, A., Slip Locking in Finite Elements for Composite Beams with Deformable Shear Connection, Finite Elem. Anal. Design, vol. 40, nos. 13-14, pp. 1907-1930, 2004a.

  9. Dall'Asta, A. and Zona, A., Three-Field Mixed Formulation for the Non-Linear Analysis of Composite Beams with Deformable Shear Connection, Finite Elem. Anal. Design, vol. 40, no. 4, pp. 425-448, 2004b.

  10. Ecsedi, I. and Baksa, A., Analytical Solution for Layered Composite Beams with Partial Shear Interaction Based on Timoshenko Beam Theory, Eng. Struct., vol. 115, pp. 107-117, 2016.

  11. Galuppi, L. and Royer-Carfagni, G., Effective Thickness of Laminated Glass Beams: New Expression via a Variational Approach, Eng. Struct., vol. 38, pp. 53-67, 2012.

  12. Girhammar, U.A. and Gopu, K.A., Composite Beam-Column with Interlayer Slip-Exact Analysis, J. Struct. Eng. ASCE, vol. 119, no. 4, pp. 2095-2111, 1992.

  13. Fabbrocino, G., Manfredi, G., and Cosenza, E., Non-Linear Analysis of Composite Beams under Positive Bending, Compos. Struct., vol. 70, pp. 77-89, 1999.

  14. Ferreira, M., Andrade, A., Providencia, P., and Cabrera, F., An Efficient Three-Field Mixed Finite Element Model for the Linear Analysis of Composite Beams with Deformable Shear Connection, Compos. Struct., vol. 191, pp. 190-201, 2018.

  15. Foraboschi, P., Analytical Solution of Two-Layer Beam Taking into Account Nonlinear Interlayer Slip, J. Eng. Mech. ASCE, vol. 135, no. 10, pp. 1129-1146, 2009.

  16. Hamada, S. and Arizumi, Y., Finite Element Analysis of Continuous Composite Beams with Incomplete Interaction, Proc. Jpn. Soc. Civil Eng., vol. 265, pp. 1-9, 1977.

  17. Hirst, M.J.S. and Yeo, M.F., The Analysis of Composite Beams Using Standard Finite Element Programs, Compos. Struct., vol. 11, pp. 233-237, 1980.

  18. Hughes, T.J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, New York: Dover Publications, 2000.

  19. Johnson, R.P., Longitudinal Shear Strength of Composite Beams, J. Am. Concrete Inst., vol. 67, pp. 464-466, 1970.

  20. Mallick, S.K. and Chattopadhyay, S.K., Ultimate Strength of Continuous Composite Beams, Build. Sci., vol. 10, pp. 189-198, 1975.

  21. Martinelli, E., Faella, C., and di Palma, G., Shear-Flexible Steel-Concrete Composite Beams in Partial Interaction: Closed-Form Exact Expression of the Stiffness Matrix, J. Eng. Mech. ASCE, vol. 138, pp. 151-163, 2012.

  22. Newmark, M.N., Siess, C.P., and Viest, I.M., Tests and Analysis of Composite Beams with Incomplete Interaction, Proc. Soc. Exp. Stress Analysis, New York, vol. 9, no. 1, pp. 75-92, 1951.

  23. Nguyen, Q.H., Martinelli, E., and Hjiaj, M., Derivation of the Exact Stiffness Matrix for a Two-Layer Timoshenko Beam Element with Partial Interaction, Eng. Struct., vol. 33, pp. 298-307, 2011.

  24. Oehlers, D.J. and Coughlan, C.G., The Shear Stiffness of Stud Shear Connections in Composite Beams, J. Constr. Steel Res., vol. 6, no. 4, pp. 273-284, 1986.

  25. Ozer, H., Variational Principles for Bending and Vibration of Partially Composite Timoshenko Beams, Math. Probl. Eng., vol. 2014, Article ID 435613, pp. 1-5, 2014.

  26. Reddy, J.N., An Introduction to the Finite Element Method, New York: McGraw Hill, 2006.

  27. Salari, M.L., Spacone, E., Shing, P.B., and Frangopol, D.M., Non-Linear Analysis of Composite Beams with Deformable Shear Connectors, J. Struct. Eng. ASCE, vol. 124, no. 10, pp. 1148-1158, 1998.

  28. Santos, H.A.F.A. and Silberschmidt, V.V., Hybrid Equilibrium Finite Element Formulation for Composite Beams with Partial Interaction, Compos. Struct., vol. 108, pp. 646-656, 2014.

  29. Schnabl, S., Saje, M., Turk, G., and Planinc, I., Analytical Solution of Two-Layer Beam Taking into Account Interlayer Slip and Shear Deformation, J. Struct. Eng. ASCE, vol. 133, no. 6, pp. 886-894, 2007.

  30. Taig, G. and Ranzi, G., Generalised Beam Theory (GBT) for Composite Beams with Partial Shear, Eng. Struct., vol. 99, pp. 582-602, 2015.

  31. Tullini, N. and Tralli, A., Static Analysis of Timoshenko Beam Resting on Elastic Half-Plane Based on the Coupling of Locking-Free Finite Elements and Boundary Integral, Comput. Mech., vol. 45, pp. 211-225, 2010.

  32. Xu, R. and Wang, G., Variational Principle of Partial-Interaction Composite Beams Using Timoshenko's Beam Theory, Int. J. Mech. Sci., vol. 60, no. 1, pp. 72-83, 2012.

  33. Xu, R. and Wang, G., Bending Solutions of the Timoshenko Partial-Interaction Composite Beams Using Euler-Bernoulli Solutions, J. Eng. Mech. ASCE, vol. 139, no. 12, pp. 1881-1885, 2013.

  34. Yam, L.C.P. and Chapman, J.C., The Inelastic Behavior of Simply Supported Composite Beams of Steel and Concrete, Proc. Inst. Civil Eng., vol. 41, no. 4, pp. 651-683, 1968.


Articles with similar content:

STATIC AND BUCKLING ANALYSIS OF THIN BEAMS ON AN ELASTIC LAYER
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 3
Daniele Baraldi
MODELING AND NUMERICAL SIMULATION OF THE STATIC BEHAVIOR OF MAGNETO-ELECTRO-ELASTIC MULTILAYER PLATES BASED ON A WINKLER-PASTERNAK ELASTIC SUPPORT
Composites: Mechanics, Computations, Applications: An International Journal, Vol.11, 2020, issue 2
Mustapha Hamidi, S. Zaki, Mohamed Aboussaleh
Exact Relations for the Effective Properties of Nonlinearly Elastic Inhomogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
B. Bary, Qi-Chang He
ITERATIVE GLOBAL-LOCAL APPROACH TO CONSIDER THE EFFECTS OF LOCAL ELASTO-PLASTIC DEFORMATIONS IN THE ANALYSIS OF THIN-WALLED MEMBERS
International Journal for Multiscale Computational Engineering, Vol.15, 2017, issue 2
Ali Saleh, R. Emre Erkmen
GLOBAL SENSITIVITY ANALYSIS FOR A MICROPOLAR STOKES FLOW PROBLEM
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Daniel O'Malley, L. M. Flesch, John H. Cushman