ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Composites: Mechanics, Computations, Applications: An International Journal
ESCI SJR: 0.354 SNIP: 0.655 CiteScore™: 1.2

ISSN 印刷: 2152-2057
ISSN オンライン: 2152-2073

Composites: Mechanics, Computations, Applications: An International Journal

DOI: 10.1615/CompMechComputApplIntJ.2020033858
pages 209-225

NUMERICAL SIMULATION OF RESIDUAL STRENGTH FOR INSERTS IN SANDWICH STRUCTURES

Kittigorn Chalernphonb
Geo-Informatics and Space Technology Development Agency, Space Krenovation Park (SKP) 88 Moo 9, Thungsukhla, Sriracha, Chonburi 20230, Thailand
Natthawat Hongkarnjanakul
Geo-Informatics and Space Technology Development Agency, Space Krenovation Park (SKP) 88 Moo 9, Thungsukhla, Sriracha, Chonburi 20230, Thailand
Laurent Mezeix
Faculty of Engineering, Burapha University, 169 Long-Hard Bangsaen Road, Chonburi 20131, Thailand

要約

In the present paper, numerical simulation is developed in order to predict the structural failure of a damaged potting insert in a sandwich structure. To simulate the different materials, mechanical behaviors in compression and bending of the potting and honeycomb are firstly performed experimentally. A model of the sandwich specimen is divided into three steps: damage creation by indentation, removal of the indentor, and finally pull-through. Three different damage locations are investigated. To reduce the size of the numerical model only 1/4 of the specimen is simulated. The results show that the model is able to predict the structural failure of the sandwich specimen. Delamination in the upper skin is compared with the experiment. Moreover, honeycomb damage is successfully predicted numerically. Finally, matrix cracking of the upper skin is analyzed.

参考

  1. Abrate, S., Impact on Composite Structures, Cambridge, UK: Cambridge University Press, 2005.

  2. Anjali, S.C. and Vijay, K., Effect of Porosity on the Mechanical Strength of Composite Materials, Int. J. Mech Ind. Eng., vol. 2, pp. 94-96, 2012.

  3. Benzeggagh, M.L. and Kenane, M., Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Sci. Technol., vol. 56, pp. 439-449, 1996.

  4. Bouvet, C. and Rivallant, S., Damage Tolerance of Composite Structures under Low-Velocity Impact, in Dynamic Deformation, Damage and Fracture in Composite Materials and Structures, V. Silberschmidt, Ed., Cambridge, UK: Woodhead Publishing, pp. 7-33, 2016.

  5. Bouvet, C., Mechanics of Aeronautical Composite Materials, New York: Wiley-ISTE Press, 2017.

  6. Brewer, J.C. and Lagace, P.A., Quadratic Stress Criterion for Initiation of Delamination, J. Compos. Mater., vol. 22, pp. 1141-1155, 1988.

  7. Bunyawanichakul, P., Castanie, B., and Barrau, J.J., Experimental and Numerical Analysis of Inserts in Sandwich Structures, Appl. Compos. Mater., vol. 12, pp. 177-191, 2005.

  8. Camanho, P.P., Davila, C.G., and Moura, M.F., Numerical Simulation of Mixed-Mode Progressive Delamination in Composite Materials, J. Compos. Mater., vol. 37, pp. 1415-1438, 2003.

  9. Camanho, P.P., Failure Criteria for Fiber-Reinforced Polymer Composites, from https://web.fe.up. pt/~stpinho/teaching/feup/y0506/fcriteria.pdf, 2002.

  10. Castanie, B., Aminanda, Y., Bouvet, C., and Barrau, J.J., Core Crush Criteria to Determine the Strength of Sandwich Composite Structures Subjected to Compression after Impact, Compos. Struct., vol. 86, pp. 243-250, 2008.

  11. Dubarya, N., Bouvet, C., Rivallanta, S., and Ratsifandrihanab, L., Damage Tolerance of an Impacted Composite Laminate, Compos. Struct., vol. 206, pp. 261-271, 2018.

  12. Ducept, F., Davies, P., and Gamby, D., An Experimental Study to Validate Tests Used to Determine Mixed Mode Failure Criteria of Glass/Epoxy Composites, Compos. Part A-Appl. Sci. Manuf., vol. 28, pp. 719-729, 1997.

  13. Gay, D., Composite Materials: Design and Applications, 3rd Ed., Boca Raton, FL: CRC Press, 2014.

  14. Hayman, B., Approaches to Damage Assessment and Damage Tolerance for FRP Sandwich Structures, J. Sandw. Struct. Mater., vol. 9, pp. 571-595, 2007.

  15. Mezeix, L., Dols, S., Bouvet, C., Castanie, B., Giavarini, J.-P., and Hongkarnjanakul, N., Experimental Analysis of Impact and Post-Impact Behavior of Inserts in Carbon Sandwich Structures, J. Sand. Struct. Mater, vol. 21, pp. 135-153, 2019.

  16. Mohammadi, S., Owen, D.R.J., and Peric, D.A., Combined Finite/Discrete Element Algorithm for Delamination Analysis of Composites, Finite Elem. Anal. Design, vol. 28, pp. 321-336, 1998.

  17. Polnikorn, P., Hongkarnjanakul, N., Pisailert, S., Thevenet, P., and Mezeix, L., Barely Visible Impact Damage (BVID), Quasi-Static Indentation Damage, and Post-Damaged Behavior of Inserts in Sandwich Structures, Compos. Mech., Comput., Appl. An. Int. J., vol. 10, pp. 1-15, 2019.

  18. Raju, K.S., Smith, B.L., Tomblin, J.S., Liew, K.H., and Guarddon, J.C., Impact Damage Resistance and Tolerance of Honeycomb Core Sandwich Panels, J. Compos. Mater., vol. 42, pp. 385-412, 2008.

  19. Roy, R., Nguyen, K.H., Park, Y.B., Kweon, J.H., and Choi, J.H., Testing and Modeling of NomexTM Honeycomb Sandwich Panels with Bolt Insert, Compos. PartB-Eng., vol. 56, pp. 762-769, 2013.

  20. Rozylo, P., Debski, H., and Kubiak, T., A Model of Low-Velocity Impact Damage of Composite Plates Subjected to Compression-after-Impact (CAI) Testing, Compos. Struct., vol. 181, pp. 158-170, 2017.

  21. Shindo, Y., Shinohe, D., Kumagai, S., and Horiguchi, K., Analysis and Testing of Mixed-Mode Interlaminar Fracture Behavior of Glass-Cloth/Epoxy Laminates at Cryogenic Temperatures, J. Eng. Mater. Technol., vol. 127, pp. 468-475, 2005.

  22. Shur-lok, Design Manual, accessed 2019, from www.shur-lok.com, 2012.

  23. Vinay, K.G., Eric, R.J., and Carlos, G.D., Irreversible Constitutive Law for Modeling the Delamination Process Using Interfacial Surface Discontinuities, Compos. Struct., vol. 65, pp. 289-305, 2004.

  24. Vizzini, A.J. and Zonghong, X., A Feasible Methodology for Engineering Applications in Damage Tolerance of Composite Sandwich Structures, J. Compos. Mater., vol. 38, pp. 891-914, 2004.

  25. Warren, T.L. and Tabbara, M.R., Simulations of the Penetration of 6061-T6511 Aluminum Targets by Spherical-Nosed Var 4340 Steel Projectiles, Int. J. Solids Struct., vol. 37, pp. 4419-4435, 2000.

  26. Wenbin, J., Weidong, W., and Lei, F., Low-Velocity Impact and Post-Impact Biaxial Residual Strength Tests and Simulations of Composite Laminates, Compos. Struct., vol. 235, 111758, 2020.

  27. Zenkert, D., The Handbook of Sandwich Construction, Warrington, UK: EMAS Publishing, 1997.


Articles with similar content:

EFFECT OF HOLE-NOTCH ON THE TENSILE AND COMPRESSIVE BEHAVIOR OF CARBON−EPOXY COMPOSITE LAMINATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 4
Mohsin Ali, Muhammad-Umar Saeed, Zhao Feng Chen, Zhao Hai Chen, Bin Bin Li
BARELY VISIBLE IMPACT DAMAGE (BVID), QUASI-STATIC INDENTATION DAMAGE, AND POST-DAMAGED BEHAVIOR OF INSERTS IN SANDWICH STRUCTURES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 1
Purith Polnikorn, Samran Pisailert, Natthawat Hongkarnjanakul, Pascal Thevenet, Laurent Mezeix
NUMERICAL CHARACTERIZATION OF ACRYLIC POLYMER UNDER QUASI-STATIC AND DYNAMIC LOADING BY IMPLEMENTING VISCOELASTIC MATERIAL MODEL
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 3
Uzair Ahmed Dar
EFFECTIVE THERMOELASTIC PROPERTIES OF POLYSILOXANE MATRIX-BASED PLAIN WEAVE TEXTILE COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 3
Michal Sejnoha, Jan Vorel, Edith Grippon
A NEW CONTROL TECHNIQUE FOR POLYMER BLEND MORPHOLOGY USING RADIATION HEATING
ICHMT DIGITAL LIBRARY ONLINE, Vol.15, 2001, issue
Takushi Saito, Isao Satoh