ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Composites: Mechanics, Computations, Applications: An International Journal
ESCI SJR: 0.193 SNIP: 0.497 CiteScore™: 0.39

ISSN 印刷: 2152-2057
ISSN オンライン: 2152-2073

Composites: Mechanics, Computations, Applications: An International Journal

DOI: 10.1615/CompMechComputApplIntJ.2018029234
pages 213-220

MECHANISM OF GROWTH OF INTERFACIAL REGIONS IN POLYMER/ CARBON NANOTUBE NANOCOMPOSITES

I. V. Dolbin
Kh.M. Berbekov Kabardino-Balkarian State University, 173 Chernyshevsky Str., Nal'chik, 360000, Russia
Yulia N. Karnet
Institute of Applied Mechanics, Russian Academy of Sciences, 7 Leningradsky Ave., Moscow, 125040, Russian Federation
Georgii V. Kozlov
Kh.M. Berbekov Kabardino-Balkarian State University, 173 Chernyshevsky Str., Nal'chik, 360000, Russia
Alexander N. Vlasov
Institute of Applied Mechanics, Russian Academy of Sciences, 7 Leningradsky Ave., Moscow, 125040, Russia

要約

The mechanism of creation of interfacial regions in polymer/carbon nanotube nanocomposites was studied within the framework of fractal analysis notions. It has been shown that the structure of ring-like formations of carbon nanotubes in a polymer matrix that controls the multitude of growth nodes or "open boundary" of these formations defines the level of interfacial interactions and, hence, the relative fraction of interfacial regions. In turn, the last parameter defines the mechanical properties of the nanocomposites under consideration, specifically, their reinforcement degree, since these regions represent the reinforcing element of the structure of such nanomaterials.

参考

  1. Coleman, J.N., Cadek, M., Ryan, K.P., Fonseca, A., Nagy, J.B., Blau, W.J., and Ferreira, M.S., Reinforcement of Polymer with Carbon Nanotubes. The Role of an Ordered Polymer Interfacial Region. Experiment and Modeling, Polymer, vol. 47, no. 23, pp. 8556-8561, 2006. DOI: 10/1016/j.polymer.2006.10.014.

  2. Gao, J., Itkis, M.E., Bekyarova, Yu.A., Zhao, B., and Haddon, R.S., Continuous Spinning of a Single-Walled Carbon Nanotube-Nylon Composite Fiber, J. Amer. Chem. Soc., vol. 127, no. 11, pp. 3847-3854, 2005. DOI: 10.1021/ja.0446193.

  3. Kozlov, G.V. and Dolbin, I.V., The Simulation of Carbon Nanotubes as Macromolecular Coils: Interfacial Adhesion, Mater. Phys. Mech., vol. 32, no. 2, pp. 103-107, 2017. DOI: 10.18720/MPM.3222017_1.

  4. Kozlov, G.V. and Dolbin, I.V., The Fractal Model of Mechanical Stress Transfer in Nanocomposites Polyurethane/Carbon Nanotubes, Lett. Mater., vol. 8, no. 1, pp. 77-80, 2018. DOI: 10.22226/2410-3535-2018-1-77-80.

  5. Meakin, P., Coniglio, A., Stanley, H.F., and Witten, T.A., Scaling Properties for the Surfaces of Fractal and Nonfractal Objects: An Infinite Hierarchy of Critical Exponents, Phys. Rev. A, vol. 34, no. 4, pp. 3325-3340, 1986.

  6. Mikitaev, A.K. and Kozlov, G.V., Description of the Degree of Reinforcement of Polymer/Carbon Nano-tube Nanocomposites in the Framework of Percolation Models, Phys. Solid State, vol. 57, no. 5, pp. 974-977, 2015a. DOI: 10.1134/S1063783415050224.

  7. Mikitaev, A.K. and Kozlov, G.V., The Role of Interfacial Surfaces in the Formation of the Properties of Polymer Nanocomposites, J. Surf. Inves. X-ray, Synchrotron and Neutron Techn., vol. 10, no. 1, pp. 250-253, 2015b. DOI: 10.1134/S1027451016010262.

  8. Mikitaev, A.K., Kozlov, G.V., and Zaikov, G.E., Polymer Nanocomposites: Varietly of Structural Forms and Applications, New York: Nova Science Publishers, Inc., 2008.

  9. Rammal, R. and Toulouse, G., Random Walks on Fractal Structures and Percolation Clusters, J. Phys. Lett., vol. 44, no. 1, pp. L13-L22, 1983.

  10. Schaefer, D.W. and Justice, R.S., How Nano Are Nanocomposites?, Macromolecules, vol. 40, no. 24, pp. 8501-8517, 2007. DOI: 10.1021/ma070356w.

  11. Schaefer, D.W., Zhao, J., Brown, J.M., Anderson, D.P., and Tomlin, D.W., Morphology of Dispersed Carbon Single-Walled Nanotubes, Chem. Phys. Lett., vol. 375, nos. 3-4, pp. 369-375, 2003. DOI: 10.1016/S0009-2614(03)00867-4.

  12. Schaefer, D.W., Zhao, J., Dowty, H., Alexander, M., and Order, E.B., Carbon Nanofibre Reinforcement of Soft Materials, Soft Mater., vol. 4, no. 10, pp. 2071-2079, 2008. DOI: 10.1039/b805314f.

  13. Stanley, H.F., A Fractal Surfaces and Model of "Termite" for Two-Component Random Materials, in: Fractals in Physics, L. Pietronero and E. Tozatti Eds., Amsterdam, Oxford, New York, Tokyo: North-Holland, pp. 458-474, 1986.

  14. Yanovsky, Yu.G., Kozlov, G.V., Zhirikova, Z.M., Aloev, V.Z., and Karnet, Yu.N., Special Features of the Structure of Carbon Nanotubes in Polymer Composite Media, Nanomech. Sci. Technol. An Int. J., vol. 3, no. 2, pp. 99-127, 2012. DOI: 10.1615/NanomechanicsSci.TechnolInternJ.v.3.i.2.10.


Articles with similar content:

Limit Analysis of One Class of Optimal Control Problems in Thick Singular Junctions
Journal of Automation and Information Sciences, Vol.37, 2005, issue 1
Peter I. Kogut, Taras A. Mel'nik
INTERACTIONS BETWEEN POLYMERS AND CARBON NANOTUBES AND THEIR IMPACT ON THE PROPERTIES OF NANOCOMPOSITES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.9, 2018, issue 3
Georgii V. Kozlov, A. N. Vlasov, I. V. Dolbin, Yulia N. Karnet
ASSESSMENT OF THE STRENGTH OF CARBON−CARBON COMPOSITES IN CROSS-BENDING AND SHEARING
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 3
I. V. Pavelko, V. I. Zhigun
A COARSE-GRAINED ATOMISTIC METHOD FOR 3D DYNAMIC FRACTURE SIMULATION
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 3
Youping Chen, Qian Deng
QUANTUM-MECHANICAL STUDY OF FRICTION IN NANOCONTACTS
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 3
Oleg I. Kaminsky, V. G. Zavodinsky