ライブラリ登録: Guest
Critical Reviews™ in Oncogenesis

年間 4 号発行

ISSN 印刷: 0893-9675

ISSN オンライン: 2162-6448

SJR: 0.395 SNIP: 0.322 CiteScore™:: 2.5 H-Index: 54

Indexed in

Current Perspectives in Immunotherapy for Liver Cancer

巻 25, 発行 1, 2020, pp. 31-46
DOI: 10.1615/CritRevOncog.2020034965
Get accessGet access

要約

Liver cancer is a particularly aggressive group of malignancies with historically low survival rates. Despite advancements in cancer treatments in general in the last few decades, incidence and mortality have not changed. Even though some phase 1 and 2 studies have shown promising results, many medication have failed to reach a sustainable level of efficacy to move into the clinical setting. Immunotherapy drugs have shown impressive results in the treatment of specific immunogenic cancers, prompting the possibility of their use in liver cancers. Immunotherapy medications approved for other cancers have received FDA accelerated approval for treatment of hepatocellular carcinoma. But, these approvals are contingent upon verification and description of clinical benefit in confirmatory trials. With more treatments in development involving cancer vaccines and natural killer cell-mediated therapy, liver cancer treatment is being reinvigorated with a broad array of new treatment angles. In this review article, we discuss these treatments, focusing on mechanism of action and clinical trials. Much needed advancements in treating late- and early-stage liver cancers will require new and innovative immunotherapeutic treatments.

参考
  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. Cancer J Clin. 2020;70(1):7-30.

  2. Ayoub JP, Hess KR, Abbruzzese MC, Lenzi R, Raber MN, Abbruzzese JL. Unknown primary tumors metastatic to liver. J Clin Oncol. 1998;16(6):2105-12.

  3. Dasgupta P, Henshaw C, Youlden DR, Clark PJ, Aitken JF, Baade PD. Global trends in incidence rates of primary adult liver cancers: A systematic review and meta-analysis. Frontiers Oncol. 2020;10:171. PubMed PMID: 32185125.eng.

  4. Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol. 2006;23(1):47-63. PubMed PMID: 21326720. eng.

  5. Dhamija E, Paul SB, Kedia S. Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: An increasing concern. Indian J Med Res. 2019;149(1):9-17. PubMed PMID: 31115369.eng.

  6. Recio-Boiles A, Tsoris A, Babiker HM. Cancer, rectal (rectum). In: StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing; 2019.

  7. Jhunjhunwala S, Jiang Z, Stawiski EW, Gnad F, Liu J, Mayba O, Du P, Diao J, Johnson S, Wong K-F, Gao Z, Li Y, Wu TD, Kapadia SB, Modrusan Z, French DM, Luk JM, Seshagiri S, Zhang Z. Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol. 2014;15(8):436. PubMed PMID: 25159915.eng.

  8. Feng GJ, Cotta W, Wei XQ, Poetz O, Evans R, Jarde T, Reed K, Meniel V, Williams GT, Clarke AR, Dale TC. Conditional disruption of Axin1 leads to development of liver tumors in mice. Gastroenterology. 2012;143(6):1650-9.

  9. Lee SE, Chang S-H, Kim WY, Lim SD, Kim WS, Hwang TS, Han HS. Frequent somatic TERT promoter mutations and CTNNB1 mutations in hepatocellular carcinoma. Oncotarget. 2016;7(43):69267-75. PubMed PMID: 27661004. eng.

  10. Liu C-J, Chen B-F, Chen P-J, Lai M-Y, Huang W-L, Kao J-H, Chen D-S. Role of hepatitis B virus precore/core promoter mutations and serum viral load on noncirrhotic hepatocellular carcinoma: A case-control study. J Infect Dis. 2006;194(5):594-9.

  11. Wang B, Majumder S, Nuovo G, Kutay H, Volinia S, Patel T, Schmittgen TD, Croce C, Ghoshal K, Jacob ST. Role of microRNA-155 at early stages of hepatocarcinogenesis induced by choline-deficient and amino acid-defined diet in C57BL/6 mice. Hepatology. 2009;50(4):1152-61. PubMed PMID: 19711427.eng.

  12. Wang W-H, Hullinger RL, Andrisani OM. Hepatitis B virus X protein via the p38MAPK pathway induces E2F1 release and ATR kinase activation mediating p53 apoptosis. J Biol Chem. 2008;283(37):25455-67. PubMed PMID: 18606816. Epub 2008/07/07.eng.

  13. Chung T-W, Lee Y-C, Kim C-H. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways: Involvement of invasive potential. FASEB J. 2004;18(10):1123-5.

  14. Kao C-F, Chen S-Y, Chen J-Y, Wu Lee Y-H. Modulation of p53 transcription regulatory activity and post-translational modification by hepatitis C virus core protein. Oncogene. 2004;23(14):2472-83.

  15. Alisi A, Giambartolomei S, Cupelli F, Merlo P, Fontemaggi G, Spaziani A, Balsano C. Physical and functional interaction between HCV core protein and the different p73 isoforms. Oncogene. 2003;22(17):2573-80.

  16. Machida K, Liu J-C, McNamara G, Levine A, Duan L, Lai MMC. Hepatitis C virus causes uncoupling of mitotic checkpoint and chromosomal polyploidy through the Rb pathway. J Virol. 2009;83(23): 12590-600. PubMed PMID: 19793824. Epub 2009/09/30.eng.

  17. Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O. Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor a. Hepatology. 2000;32(5):958-61.

  18. Fukutomi T, Zhou Y, Kawai S, Eguchi H, Wands JR, Li J. Hepatitis C virus core protein stimulates hepatocyte growth: Correlation with upregulation of wnt-1 expression. Hepatology. 2005;41(5):1096-105.

  19. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States. III: Liver, biliary tract, and pancreas. Gastroenterology. 2009;136(4):1134-44.

  20. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, Choti MA, Yeo CJ, Schulick RD. Cholangiocarcinoma: Thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755-62. PubMed PMID: 17457168.eng.

  21. Massarweh NN, El-Serag HB. Epidemiology of hepato-cellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Control. 2017 Jul-Sep;24(3):1073274817729245. PubMed PMID: 28975830.eng.

  22. Buettner S, van Vugt JLA, Ijzermans JN, Groot Koerkamp B. Intrahepatic cholangiocarcinoma: Current perspectives. Onco Targets Ther. 2017;10:1131-42. PubMed PMID: 28260927.eng.

  23. Ten Hove A, de Meijer VE, Hulscher JBF, de Kleine RHJ. Meta-analysis of risk of developing malignancy in congenital choledochal malformation. Br J Surg. 2018;105(5):482-90. PubMed PMID: 29480528. Epub 2018/02/26.eng.

  24. Xiao J, Zhu J, Liu Z, Wan R, Li Y, Xiao W. Role of surgical treatment for hepatolithiasis-associated intrahepatic cholangiocarcinoma: A retrospective study in a single in-stitution. J Cancer Res Therap. 2017;13(5):756-60.

  25. Chanon W, Nairismagi M-L, Ong CK, Lim WK, Dima S, Pairojkul C, Lim KH, McPherson JR, Cutcutache I, Heng HL, Ooi L, Chung A, Chow P, Cheow PC, Lee SY, Choo SP, Tan IBH, Duda D, Nastase A, Myint SS, Wong BH, Gan A, Rajasegaran V, Ng CCY, Nagarajan S, Jusakul A, Zhang S, Vohra P, Yu W, Huang D, Sithithaworn P, Yongvanit P, Wongkham S, Khuntikeo N, Bhudhisawasdi V, Popescu I, Rozen SG, Tan P, Teh BT. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nature Genet. 2013;45(12):1474-8.

  26. Churi CR, Shroff R, Wang Y, Rashid A, Kang HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, Janku F, Crane CH, Mishra L, Vauthey J-N, Wolff RA, Mills G, Javle M. Mutation profiling in cholangiocarcinoma: Prognostic and therapeutic implications. PLoS One. 2014;9(12):e115383-e. PubMed PMID: 25536104. eng.

  27. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani P, Offerhaus GJA, Roa JC, Roberts LR, Gores GJ, Popescu I, Alexandrescu ST, Dima S, Fassan M, Simbolo M, Mafficini A, Capelli P, Lawlor RT, Ruzzenente A, Guglielmi A, Tortora G, de Braud F, Scarpa A, Jarnagin W, Klimstra D, Karchin R, Velculescu VE, Hruban RH, Vogelstein B, Kinzler KW, Papadopoulos N, Wood LD. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangio-carcinomas. Nature Genet. 2013;45(12):1470-3. PubMed PMID: 24185509. Epub 2013/11/03.eng.

  28. Honeyman JN, Simon EP, Robine N, Chiaroni-Clarke R, Darcy DG, Lim II, Gleason CE, Murphy JM, Rosenberg BR, Teegan L, Takacs CN. Detection of a recurrent DNAJB1-PRKACA chimeric transcript in fibrolamellar hepatocellular carcinoma. Science. 2014 Feb 28;343(6174):1010-4.

  29. Makk L, Creech JL, Whelan JG Jr, Johnson MN. Liver damage and angiosarcoma in vinyl chloride workers: A systematic detection program. JAMA. 1974;230(1):64-8.

  30. Hirschman BA, Pollock BH, Tomlinson GE. The spectrum of APC mutations in children with hepatoblastoma from familial adenomatous polyposis kindreds. J Pediatrics. 2005;147(2):263-6.

  31. Sanders RP, Furman WL. Familial adenomatous polyposis in two brothers with hepatoblastoma: Implications for diagnosis and screening. Pediatr Blood Cancer. 2006 Nov;47(6):851-4. PubMed PMID: 16106429. Epub 2005/08/18.eng.

  32. Dimitroulis D, Damaskos C, Valsami S, Davakis S, Garmpis N, Spartalis E, Athanasiou A, Moris D, Sakellariou S, Kykalos S, Tsourouflis G, Garmpi A, Delladetsima I, Kontzoglou K, Kouraklis G. From diagnosis to treatment of hepatocellular carcinoma: An epidemic problem for both developed and developing world. World J Gastroenterol. 2017;23(29): 5282-94. PubMed PMID: 28839428. eng.

  33. Ringelhan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160274. PubMed PMID: 28893941. eng.

  34. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118(12):3030-44.

  35. Bai D-S, Zhang C, Chen P, Jin S-J, Jiang G-Q. The prognostic correlation of AFP level at diagnosis with pathological grade, progression, and survival of patients with hepatocellular carcinoma. Sci Rep. 2017;7(1):12870.

  36. Lou J, Zhang L, Lv S, Zhang C, Jiang S. Biomarkers for hepatocellular carcinoma. Biomark Cancer. 2017;9:1-9. PubMed PMID: 28469485.eng.

  37. Ben Mousa A. Sorafenib in the treatment of advanced hepatocellular carcinoma. Saudi J Gastroenterol. 2008; 14(1):40-2. PubMed PMID: 19568496.eng.

  38. Chiang I-T, Liu Y-C, Wang W-H, Hsu F-T, Chen H-W, Lin W-J, Chang W-Y, Hwang J-J. Sorafenib inhibits TPA-induced MMP-9 and VEGF expression via suppression of ERK/NF-KB pathway in hepatocellular carcinoma cells. In Vivo. 2012;26(4):671-81.

  39. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687.

  40. Sastry KS, Too CT, Kaur K, Gehring AJ, Low L, Javiad A, Pollicino T, Li L, Kennedy PT, Lopatin U, Macary PA, Bertoletti A. Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J Virol. 2011 Mar;85(5):1935-42. PubMed PMID: 21159876. PMCID: PMC3067764. Epub 2010/12/17.eng.

  41. Bertoletti A, Le Bert N. Immunotherapy for chronic hepatitis B virus infection. Gut Liver. 2018;12(5):497-507. PubMed PMID: 29316747.eng.

  42. Zhang HC, Luo W, Wang Y. Acute liver injury in the context of immune checkpoint inhibitor-related colitis treated with infliximab. J Immunother Cancer. 2019;7(1):47.

  43. Zhang D, Hart J, Ding X, Zhang X, Feely M, Yassan L, Alpert L, Soldevila-Pico C, Zhang X, Liu X, Lai J. Histologic patterns of liver injury induced by anti-PD-1 therapy. Gastroenterol Rep. 2019;8(1):50-5.

  44. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immuno-dominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003;77(8):4911-27. PubMed PMID: 12663797.eng.

  45. Wang X, He Q, Shen H, Xia A, Tian W, Yu W, Sun B. TOX promotes the exhaustion of antitumor CD8+ T cells by preventing PD1 degradation in hepatocellular carcinoma. J Hepatol. 2019;71(4):731-41.

  46. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore antitumor immunity. J Exper Med. 2010;207(10):2187-94.

  47. Takamura S, Tsuji-Kawahara S, Yagita H, Akiba H, Sakamoto M, Chikaishi T, Kato M, Miyazawa M. Premature terminal exhaustion of friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J Immunol. 2010;184(9):4696-707.

  48. Trinh S, Le A, Gowani S, La-Beck NM. Management of immune-related adverse events associated with immune checkpoint inhibitor therapy: A minireview of current clinical guidelines. Asia Pac J Oncol Nurs. 2019;6(2):154-60. PubMed PMID: 30931360.eng.

  49. Okada N, Kawazoe H, Takechi K, Matsudate Y, Utsunomiya R, Zamami Y, Goda M, Imanishi M, Chuma M, Hidaka N, Sayama K, Kubo Y, Tanaka A, Ishizawa K. Association between immune-related adverse events and clinical efficacy in patients with melanoma treated with nivolumab: A multicenter retrospective study. Clin Therap. 2019;41(1):59-67.

  50. Toi Y, Sugawara S, Kawashima Y, Aiba T, Kawana S, Saito R, Tsurumi K, Suzuki K, Shimizu H, Sugisaka J, Ono H, Domeki Y, Terayama K, Nakamura A, Yamanda S, Kimura Y, Honda Y. Association of immune-related adverse events with clinical benefit in patients with advanced non-small-cell lung cancer treated with nivolumab. Oncologist. 2018;23(11): 1358-65. PubMed PMID: 29934411. Epub 2018/06/22.eng.

  51. Rogado J, Sanchez-Torres JM, Romero-Laorden N, Ballesteros AI, Pacheco-Barcia V, Ramos-Levi A, Arranz R, Lorenzo A, Gullon P, Donnay O, Adrados M, Costas P, Aspa J, Alfranca A, Mondejar R, Colomer R. Immune-related adverse events predict the therapeutic efficacy of anti-PD-1 antibodies in cancer patients. Eur J Cancer. 2019;109:21-7.

  52. Carretero-Gonzalez A, Lora D, Ghanem I, Zugazagoitia J, Castellano D, Sepulveda JM, Lopez-Martin JA, Paz-Ares L, de Velasco G. Analysis of response rate with ANTI PD1/PD-L1 monoclonal antibodies in advanced solid tumors: A meta-analysis of randomized clinical trials. Oncotarget. 2018;9(9):8706-15. PubMed PMID: 29492229. eng.

  53. Lue A, Serrano MT, Bustamante FJ, Inarrairaegui M, Arenas JI, Testillano M, Lorente S, Gil C, Torre Mdl, Gomez A, Sangro B. Neutrophil-to-lymphocyte ratio predicts survival in European patients with hepatocellular carcinoma administered sorafenib. Oncotarget. 2017;8(61).

  54. Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, Morris LS, Coleman N, Alexander GJM. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol. 2006;45(2):246-53.

  55. Yoong KF, McNab G, Hubscher SG, Adams DH. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol. 1998;160(8):3978.

  56. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim T-Y, Choo S-P, Trojan J, Welling TH, Meyer T, Kang Y-K, Yeo W, Chopra A, Anderson J, dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389(10088):2492-502.

  57. Simile MM, Bagella P, Vidili G, Spanu A, Manetti R, Seddaiu MA, Babudieri S, Madeddu G, Serra PA, Altana M, Paliogiannis P. Targeted therapies in cholangiocarcinoma: emerging evidence from clinical trials. Medicina (Kaunas). 2019;55(2):42. PubMed PMID: 30743998.eng.

  58. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, Shanafelt TD, Sinha S, Le-Rademacher J, Feldman AL, Habermann TM, Witzig TE, Wiseman GA, Lin Y, Asmus E, Nowakowski GS, Conte MJ, Bowen DA, Aitken CN, Van Dyke DL, Greipp PT, Liu X, Wu X, Zhang H, Secreto CR, Tian S, Braggio E, Wellik LE, Micallef I, Viswanatha DS, Yan H, Chanan-Khan AA, Kay NE, Dong H, Ansell SM. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419-27. PubMed PMID: 28424162. Epub 2017/04/19.eng.

  59. Hodges TR, Ott M, Xiu J, Gatalica Z, Swensen J, Zhou S, Huse JT, de Groot J, Li S, Overwijk WW, Spetzler D, Heimberger AB. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: Implications for immune checkpoint immunotherapy. Neuro Oncol. 2017;19(8):1047-57. PubMed PMID: 28371827.eng.

  60. Xing X, Guo J, Ding G, Li B, Dong B, Feng Q, Li S, Zhang J, Ying X, Cheng X, Guo T, Du H, Hu Y, Zhou T, Wang X, Li L, Li Q, Xie M, Li L, Gao X, Shan F, Li Z, Jia S, Wen X, Wang J, Ji J. Analysis of PD1, PDL1, PDL2 expression and T cells infiltration in 1014 gastric cancer patients. Oncoimmunology. 2017;7(3):e1356144-e. PubMed PMID: 29399387.eng.

  61. Ikemizu S, Gilbert RJC, Fennelly JA, Collins AV, Harlos K, Jones EY, Stuart DI, Davis SJ. Structure and dimerization of a soluble form of B7-1. Immunity. 2000;12(1):51-60.

  62. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008 Oct 10;322(5899):271-5.

  63. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303-10. PubMed PMID: 10899917.eng.

  64. Li CX, Ling CC, Shao Y, Xu A, Li XC, Ng KT-P, Liu XB, Ma YY, Qi X, Liu H, Liu J, Yeung OWH, Yang XX, Liu QS, Lam YF, Zhai Y, Lo CM, Man K. CXCL10/ CXCR3 signaling mobilized-regulatory T cells promote liver tumor recurrence after transplantation. J Hepatol. 2016;65(5):944-52.

  65. Sangro B, Gomez-Martin C, de la Mata M, Inarrairaegui M, Garralda E, Barrera P, Riezu-Boj JI, Larrea E, Alfaro C, Sarobe P, Lasarte JJ, Perez-Gracia JL, Melero I, Prieto J. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013 Jul;59(1):81-8. PubMed PMID: 23466307. Epub 2013/03/08.eng.

  66. Duffy AG, Ulahannan SV, Makorova-Rusher O, Rahma O, Wedemeyer H, Pratt D, Davis JL, Hughes MS, Heller T, ElGindi M, Uppala A, Korangy F, Kleiner DE, Figg WD, Venzon D, Steinberg SM, Venkatesan AM, Krishnasamy V, Abi-Jaoudeh N, Levy E, Wood BJ, Greten TF. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol. 2017 Mar;66(3): 545-51. PubMed PMID: 27816492. PMCID: PMC5316490. Epub 2016/11/07.eng.

  67. Balch CM, Gershenwald JE, Soong S-J, Thompson JF, Atkins MB, Byrd DR, Buzaid AC, Cochran AJ, Coit DG, Ding S, Eggermont AM, Flaherty KT, Gimotty PA, Kirkwood JM, McMasters KM, Mihm MC, Morton DL, Ross MI, Sober AJ, Sondak VK. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199-206.

  68. Wolchok JD, Weber JS, Maio M, Neyns B, Harmankaya K, Chin K, Cykowski L, de Pril V, Humphrey R, Lebbe C. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials. Annals Oncol. 2013;24(8):2174-80.

  69. Tang C, Welsh JW, de Groot P, Massarelli E, Chang JY, Hess KR, Basu S, Curran MA, Cabanillas ME, Subbiah V, Fu S, Tsimberidou AM, Karp D, Gomez DR, Diab A, Komaki R, Heymach JV, Sharma P, Naing A, Hong DS. Ipilimumab with stereotactic ablative radiation therapy: Phase I results and immunologic correlates from peripheral T cells. Clin Cancer Res. 2017;23(6): 1388-96. PubMed PMID: 27649551. Epub 2016/09/20.eng.

  70. Yau T, Kang Y-K, Kim T-Y, El-Khoueiry AB, Santoro A, Sangro B, Melero I, Kudo M, Hou M-M, Matilla A, Tovoli F, Knox JJ, He AR, El-Rayes BF, Acosta-Rivera M, Neely J, Shen Y, Baccan C, Dela Cruz CM, Hsu C. Nivolumab (NIVO) + ipilimumab (IPI) combination therapy in patients (pts) with advanced hepatocellular carcinoma (aHCC): Results from CheckMate 040. J Clin Oncol. 2019;37(15 Suppl):4012.

  71. Kelley RK, Mitchell E, Behr S, Hwang J, Keenan B, Cheung A, Gordan JD, Ko AH, Cinar P, Atreya CE, Van Loon K, Weber T, Ngo Z, Quandt ZE, Liu C, Venook AP, Fong L. Phase II trial of pembrolizumab (PEM) plus granulocyte macrophage colony stimulating factor (GM-CSF) in advanced biliary cancers (ABC). J Clin Oncol. 2018;36(Suppl 4):386.

  72. Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y, Kagaya T, Yamashita T, Honda M, Kaneko S. Comparative analysis of various tumor-associated antigen-specific T-cell responses in patients with hepatocellular carcinoma. Hepatology. 2011;53(4):1206-16.

  73. Inada Y, Mizukoshi E, Seike T, Tamai T, Iida N, Kitahara M, Yamashita T, Arai K, Terashima T, Fushimi K, Yamashita T, Honda M, Kaneko S. Characteristics of immune response to tumor-associated antigens and immune cell profile in patients with hepatocellular carcinoma. Hepatology. 2019;69(2):653-65.

  74. Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nature Rev Cancer. 2017;17(4):209-22.

  75. Mauriello A, Zeuli R, Cavalluzzo B, Petrizzo A, Tornesello ML, Buonaguro FM, Ceccarelli M, Tagliamonte M, Buonaguro L. High somatic mutation and neoantigen burden do not correlate with decreased progression-free survival in HCC patients not undergoing immunotherapy. Cancers (Basel). 2019;11(12):1824. PubMed PMID: 31756926.eng.

  76. Rech AJ, Balli D, Mantero A, Ishwaran H, Nathanson KL, Stanger BZ, Vonderheide RH. Tumor immunity and survival as a function of alternative neopeptides in human cancer. Cancer Immunol Res. 2018;6(3):276-87. PubMed PMID: 29339376. Epub 2018/01/16.eng.

  77. Chang MH, Chen TH, Hsu HM, Wu TC, Kong MS, Liang DC, Ni YH, Chen CJ, Chen DS. Prevention of hepatocellular carcinoma by universal vaccination against hepatitis B virus: The effect and problems. Clin Cancer Res. 2005 Nov 1;11(21):7953-7. PubMed PMID: 16278421. Epub 2005/11/10.eng.

  78. Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, Liang DC, Shau WY, Chen DS; Taiwan Childhood Hepatoma Study Group. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. N Engl J Med. 1997 Jun 26;336(26):1855-9. PubMed PMID: 9197213. Epub 1997/06/26.eng.

  79. Chang M-H, You S-L, Chen C-J, Liu C-J, Lai M-W, Wu T-C, Wu S-F, Lee C-M, Yang S-S, Chu H-C, Wang T-E, Chen B-W, Chuang W-L, Soon M-S, Lin C-Y, Chiou S-T, Kuo H-S, Chen D-S, Yang Y-J, Lo G-H, Kong M-S, Wang P-M, Yang C-C, Chu C-H, Lin L-H, Chien R-N, Lee T-H, Yang K-C, Liao L-Y, Mo L-R, Liu J-D, Yang T-H, Lo C-C, Tsai M-H, Chou C-H, Cheng Y-S. Long-term effects of hepatitis B immunization of infants in preventing liver cancer. Gastroenterology. 2016;151(3):472-80.e1.

  80. Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends Cancer. 2018;4(2):119-37. PubMed PMID: 29458962.eng.

  81. Dissanayake D, Murakami K, Tran MD, Elford AR, Millar DG, Ohashi PS. Peptide-pulsed dendritic cells have superior ability to induce immune-mediated tissue destruction compared to peptide with adjuvant. PLoS One. 2014;9(3):e92380-e. PubMed PMID: 24647761.eng.

  82. Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS, Adams DH. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49(1):124-32.

  83. Cramer DW, Vitonis AF, Pinheiro SP, McKolanis JR, Fichorova RN, Brown KE, Hatchette TF, Finn OJ. Mumps and ovarian cancer: Modern interpretation of an historic association. Cancer Causes Control. 2010 Aug;21(8):1193-201. PubMed PMID: 20559706. PMCID: PMC2951028. Epub 2010/06/19.eng.

  84. Kolmel KF, Grange JM, Krone B, Mastrangelo G, Rossi CR, Henz BM, Seebacher C, Botev IN, Niin M, Lambert D, Shafir R, Kokoschka EM, Kleeberg UR, Gefeller O, Pfahlberg A. Prior immunisation of patients with malignant melanoma with vaccinia or BCG is associated with better survival. A European Organization for Research and Treatment of Cancer cohort study on 542 patients. Eur J Cancer. 2005 Jan;41(1):118-25. PubMed PMID: 15617996. Epub 2004/12/25.eng.

  85. Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic virus-based immunotherapies for hepatocellular carcinoma. Mediators Inflamm. 2017;2017:5198798. PubMed PMID: 28512387. PMCID: PMC5415860. Epub 2017/05/18.eng.

  86. Benencia F, Courreges MC, Fraser NW, Coukos G. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation. Cancer Biol Ther. 2008;7(8):1194-205.

  87. Benencia F, Courreges MC, Conejo-Garcia JR, Mohamed-Hadley A, Zhang L, Buckanovich RJ, Carroll R, Fraser N, Coukos G. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol Ther. 2005;12(5):789-802.

  88. Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, Cho M, Lim HY, Chung HC, Kim CW, Burke J, Lencioni R, Hickman T, Moon A, Lee YS, Kim MK, Daneshmand M, Dubois K, Longpre L, Ngo M, Rooney C, Bell JC, Rhee B-G, Patt R, Hwang T-H, Kirn DH. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nature Med. 2013;19(3):329-36. PubMed PMID: 23396206. Epub 2013/02/10.eng.

  89. Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol. 2016;100(3):481-9. PubMed PMID: 27354413. Epub 2016/06/28.eng.

  90. Parajuli B, Sonobe Y, Kawanokuchi J, Doi Y, Noda M, Takeuchi H, Mizuno T, Suzumura A. GM-CSF increases LPS-induced production of proinflammatory mediators via upregulation of TLR4 and CD14 in murine microglia. J Neuroinflammation. 2012 Dec 13;9:268. PubMed PMID: 23234315. PMCID: PMC3565988. Epub 2012/12/14.eng.

  91. Habib N, Salama H, Abd El Latif Abu Median A, Isac Anis I, Abd Al Aziz RA, Sarraf C, Mitry R, Havlik R, Seth P, Hartwigsen J, Bhushan R, Nicholls J, Jensen S. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002 Mar;9(3):254-9. PubMed PMID: 11896441. Epub 2002/03/16.eng.

  92. Lange S, Lampe J, Bossow S, Zimmermann M, Neubert W, Bitzer M, Lauer UM. A novel armed oncolytic measles vaccine virus for the treatment of cholangiocarcinoma. Hum Gene Ther. 2013;24(5): 554-64. PubMed PMID: 23550539.eng.

  93. Fauriat C, Long EO, Ljunggren H-G, Bryceson YT. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167-76. PubMed PMID: 19965656. Epub 2009/12/01.eng.

  94. Gooneratne SL, Center RJ, Kent SJ, Parsons MS. Functional advantage of educated KIR2DL1(+) natural killer cells for anti-HIV-1 antibody-dependent activation. Clin Exp Immunol. 2016;184(1):101-9. PubMed PMID: 26647083. Epub 2016/02/04.eng.

  95. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, Bertaina A, Moretta F, Del Zotto G, Pietra G, Mingari MC, Locatelli F, Moretta L. Killer Ig-like receptors (KIRs): Their role in NK cell modulation and developments leading to their clinical exploitation. Front Immunol. 2019;10:1179. PubMed PMID: 31231370.eng.

  96. Saito H, Osaki T, Ikeguchi M. Decreased NKG2D expression on NK cells correlates with impaired NK cell function in patients with gastric cancer. Gastric Cancer. 2012 Jan;15(1):27-33. PubMed PMID: 21626292. Epub 2011/06/01.eng.

  97. Pende D, Marcenaro S, Falco M, Martini S, Bernardo ME, Montagna D, Romeo E, Cognet C, Martinetti M, Maccario R, Mingari MC, Vivier E, Moretta L, Locatelli F, Moretta A. Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: Evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity. Blood. 2009;113(13):3119-29.

  98. Peng Y-P, Zhu Y, Zhang J-J, Xu Z-K, Qian Z-Y, Dai C-C, Jiang K-R, Wu J-L, Gao W-T, Li Q, Du Q, Miao Y. Comprehensive analysis of the percentage of surface receptors and cytotoxic granules positive natural killer cells in patients with pancreatic cancer, gastric cancer, and colorectal cancer. J Transl Med. 2013;11:262. PubMed PMID: 24138752.eng.

  99. Chew V, Chen J, Lee D, Loh E, Lee J, Lim KH, Weber A, Slankamenac K, Poon RTP, Yang H, Ooi LLPJ, Toh HC, Heikenwalder M, Ng IOL, Nardin A, Abastado J-P. Chemokine-driven lymphocyte infiltration: An early intratumoural event determining long-term survival in resectable hepatocellular carcinoma. Gut. 2012;61(3):427-38. PubMed PMID: 21930732. Epub 2011/09/19.eng.

  100. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799-807. PubMed PMID: 19551844.eng.

  101. Glassner A, Eisenhardt M, Kramer B, Korner C, Coenen M, Sauerbruch T, Spengler U, Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest. 2012;92(7):967-77.

  102. Fukuda Y, Asaoka T, Eguchi H, Yokota Y, Kubo M, Kinoshita M, Urakawa S, Iwagami Y, Tomimaru Y, Akita H, Noda T, Gotoh K, Kobayashi S, Hirata M, Wada H, Mori M, Doki Y. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci. 2020; 111(2):323-33. PubMed PMID: 31799781. Epub 2020/01/23.eng.

  103. Jung IH, Kim DOH, Yoo DAK, Baek SY, Jeong SH, Jung DE, Park SW, Chung Y-Y. In vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse model. In Vivo (Athens). 2018;32(4):771-81. PubMed PMID: 29936458.eng.

  104. Parkhurst MR, Riley JP, Dudley ME, Rosenberg SA. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 2011; 17(19): 6287-97. PubMed PMID: 21844012. PM-CID: PMC3186830. Epub 2011/08/17.eng.

  105. Sakamoto N, Ishikawa T, Kokura S, Okayama T, Oka K, Ideno M, Sakai F, Kato A, Tanabe M, Enoki T, Mineno J, Naito Y, Itoh Y, Yoshikawa T. Phase I clinical trial of autologous NK cell therapy using novel expansion method in patients with advanced digestive cancer. J Transl Med. 2015;13:277. PubMed PMID: 26303618. PMCID: PMC4548900. Epub 2015/08/26.eng.

  106. Lin M, Liang S, Wang X, Liang Y, Zhang M, Chen J, Niu L, Xu K. Cryoablation combined with allogenic natural killer cell immunotherapy improves the curative effect in patients with advanced hepatocellular cancer. Oncotarget. 2017;8(47): 81967-77. PubMed PMID: 29137237. PM-CID: PMC5669863. Epub 2017/11/16.eng.

  107. Lin M, Liang SZ, Wang XH, Liang YQ, Zhang MJ, Niu LZ, Chen JB, Li HB, Xu KC. Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res. 2017;65(4):880-7. PubMed PMID: 28508945. Epub 2017/05/17.eng.

  108. Park MH, Song MJ, Cho M-C, Moon DC, Yoon DY, Han SB, Hong JT. Interleukin-32 enhances cytotoxic effect of natural killer cells to cancer cells via activation of death receptor 3. Immunology. 2012;135(1):63-72. PubMed PMID: 22043900.eng.

  109. Sahm C, Schonfeld K, Wels WS. Expression of IL-15 in NK cells results in rapid enrichment and selective cyto-toxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol Immunother. 2012;61(9): 1451-61. PubMed PMID: 22310931. Epub 2012/02/09.eng.

  110. Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P, Whiteside TL. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood. 1998;91(10):3850-61. PubMed PMID: 9573023. Epub 1998/06/20.eng.

  111. Sutlu T, Nystrom S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mech-anisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy. Hum Gene Ther. 2012;23(10):1090-100. PubMed PMID: 22779406. PMCID: PMC3472531. Epub 2012/07/12.eng.

  112. Chang Y-H, Connolly J, Shimasaki N, Mimura K, Kono K, Campana D. A chimeric receptor with NKG2D specificity enhances natural killer cell activation and killing of tumor cells. Cancer Res. 2013;73(6):1777.

  113. Li F, Wei H, Wei H, Gao Y, Xu L, Yin W, Sun R, Tian Z. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology. 2013;144(2):392-401. PubMed PMID: 23103614. Epub 2012/10/30.eng.

  114. Bi J, Zhang Q, Liang D, Xiong L, Wei H, Sun R, Tian Z. T-cell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis. Hepatology. 2014;59(5):1715-25. PubMed PMID: 24319005. Epub 2013/12/10.eng.

  115. Vey N, Karlin L, Sadot-Lebouvier S, Broussais F, Berton-Rigaud D, Rey J, Charbonnier A, Marie D, Andre P, Paturel C, Zerbib R, Bennouna J, Salles G, Gonjalves A. A phase 1 study of lirilumab (antibody against killer immunoglobulin-like receptor antibody KIR2D; IPH2102) in patients with solid tumors and hematologic malignancies. Oncotarget. 2018;9(25):17675-88. PubMed PMID: 29707140.eng.

  116. van Hall T, Andre P, Horowitz A, Ruan DF, Borst L, Zerbib R, Narni-Mancinelli E, van der Burg SH, Vivier E. Monalizumab: Inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer. 2019;7(1):263. PubMed PMID: 31623687.eng.

  117. Hsu YC, Ho HJ, Wu MS, Lin JT, Wu CY. Postoperative PEG-interferon plus ribavirin is associated with reduced recurrence of hepatitis C virus-related hepatocellular carcinoma. Hepatology. 2013;58(1):150-7. PubMed PMID: 23389758. Epub 2013/02/08.eng.

  118. Chen LT, Chen MF, Li LA, Lee PH, Jeng LB, Lin DY, Wu CC, Mok KT, Chen CL, Lee WC, Chau GY, Chen YS, Lui WY, Hsiao CF, Whang-Peng J, Chen PJ. Long-term results of a randomized, observation-controlled, phase III trial of adjuvant interferon Alfa-2b in hepatocellular carcinoma after curative resection. Ann Surg. 2012;255(1):8- 17. PubMed PMID: 22104564. Epub 2011/11/23.eng.

  119. Palmieri G, Montella L, Milo M, Fiore R, Biondi E, Bianco AR, Martignetti A. Ultra-low-dose interleukin-2 in unresectable hepatocellular carcinoma. Am J Clin Oncol. 2002;25(3):224-6. PubMed PMID: 12040276. Epub 2002/06/01.eng.

によって引用された
  1. Fritz Valerie, Malek Lara, Gaza Anne, Wormser Laura, Appel Majken, Kremer Andreas E., Thasler Wolfgang E., Siebler Jürgen, Neurath Markus F., Hellerbrand Claus, Bosserhoff Anja K., Dietrich Peter, Combined De-Repression of Chemoresistance Associated Mitogen-Activated Protein Kinase 14 and Activating Transcription Factor 2 by Loss of microRNA-622 in Hepatocellular Carcinoma, Cancers, 13, 5, 2021. Crossref

Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集 価格及び購読のポリシー Begell House 連絡先 Language English 中文 Русский Português German French Spain