ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018026153
pages 571-601

NUMERICAL INVESTIGATION OF MHD MIXED CONVECTION OF WATER/CuO NANOFLUID IN A SQUARE ENCLOSURE WITH VORTEX GENERATORS IN DIFFERENT ARRANGEMENTS

Sajad Sarlak
Young Researchers and Elite Club, Aligudarz Branch, Islamic Azad University, Aligudarz, 159, Iran
Shahrouz Yousefzadeh
Department of Mechanical Engineering, Aligudarz Branch, Islamic Azad University, Aligudarz, 159, Iran
Omid Ali Akbari
Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Davood Semiromi Toghraie
Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran
Ramin Sarlak
Young Researchers and Elite Club, Aligudarz Branch, Islamic Azad University, Aligudarz, 159, Iran
Fattah Assadi
Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran

要約

In this numerical study, mixed convection of water/CuO nanofluid in a square enclosure with three vortex generators in different arrangements has been simulated. The lid of the enclosure is movable, and the enclosure is under the influence of a homogeneous magnetic field with Hartmann numbers of 0, 50, and 100. The horizontal walls of the enclosure are at constant temperatures Tc and Th and the vertical walls are insulated. CuO nanoparticles with volume fractions of 0-4% have been added to the base fluid. The results indicate that, by applying the magnetic field, the circulation and regular motion of the fluid become disordered. The existence of obstacles in the enclosure greatly affects the isotherms and streamlines, and this behavior is due to the disorder of fluid motion crossing among the obstacles. By reducing the intensity of magnetic field, the temperature gradients decrease and the temperature of cooling fluid dominates most parts of the enclosure. Also, by increasing the volume fraction of nanoparticles and decreasing the magnetic field intensity, the Nusselt number is enhanced.

参考

  1. Abu-Nada, E. and Chamkha, A.J., Mixed Convection Flow in a Lid-Driven Square Enclosure Filled with a Nanofluid, Eur. J. Mech. B-Fluid, vol. 29, pp. 472-482, 2010.

  2. Ahmadi, Gh.R. and Toghrai, D., Energy and Exergy Analysis of Montazeri Steam Power Plant in Iran, Renew. Sustain. Energy Rev, vol. 56, pp. 454-463, 2016.

  3. Akbari, O.A., Goodarzi M., Safaei, M.R., Zarringhalam, M., Ahmadi Sheikh Shabani, G.R., and Dahari, M., A Modified Two-Phase Mixture Model of Nanofluid Flow and Heat Transfer in 3-D Curved Microtube, Adv. Powder Technol., vol. 27, pp. 2175-2185, 2016a.

  4. Akbari, O.A., Toghraie, D., and Karimipour, A., Impact of Ribs on Flow Parameters and Laminar Heat Transfer of Water-Aluminum Oxide Nanofluid with Different Nanoparticle Volume Fractions in a Three-Dimensional Rectangular Microchannel, Adv. Mech. Eng., vol. 7, no. 11, pp. 1-11, 2015.

  5. Akbari, O.A., Toghraie, D., and Karimipour, A., Numerical Simulation of Heat Transfer and Turbulent Flow of Water Nanofluids Copper Oxide in Rectangular Microchannel with Semi Attached Rib, Adv. Mech. Eng., vol. 8, no. 4, pp. 1-25, 2016b.

  6. Akbari, O.A., Toghraie, D., Karimipour, A., Marzban, A., and Ahmadi, G.R., The Effect of Velocity and Dimension of Solid Nanoparticles on Heat Transfer in Non-Newtonian Nanofluid, Physica E, Low-Dimens. Syst. Nanostruct., vol. 86, pp. 68-75, 2017.

  7. Alipour, H., Karimipour, A., Safaei, M.R., Toghraie Semiromi, D., and Akbari, O.A., Influence of T-Semi Attached Rib on Turbulent Flow and Heat Transfer Parameters of a Silver-Water Nanofluid with Different Volume Fractions in a Three-Dimensional Trapezoidal Microchannel, Physica E, Low-Dimens. Syst. Nanostruct., vol. 88, pp. 60-76, 2017.

  8. Aminossadati, S.M. and Ghasemi, B., Natural Convection Cooling of a Localized Heat Source at the Bottom of a Nanofluid-Filled Enclosure, Eur. J. Mech. BFluids, vol. 28, pp. 630-640, 2009.

  9. Arani, A.A.A., Akbari, O.A., Safaei, M.R., Marzban, A., Alrashed, A.A.A.A., Ahmadi, G.R., and Nguyen, T.K., Heat Transfer Improvement of Water/Single-Wall Carbon Nanotubes (SWCNT) Nanofluid in a Novel Design of a Truncated Double Layered Microchannel Heat Sink, Int. J. Heat Mass Transf., vol. 113, pp. 780-795, 2017.

  10. Arani, A.A.A., Mazrouei Sebdani, S., Mahmoodi, M., Ardeshiri, A., and Aliakbari, M., Numerical Study of Mixed Convection Flow in a Lid-Driven Cavity with Sinusoidal Heating on Sidewalls Using Nanofluid, Superlattices Microstruct., vol. 51, pp. 893-911, 2012.

  11. Arefmanesh, A. and Mahmoodi, M., Effects of Uncertainties of Viscosity Models for Al2O3-Water Nanofluid on Mixed Convection Numerical Simulations, Int. J. Therm. Sci., vol. 50, pp. 1706-1719, 2011.

  12. Behnampour, A., Akbari, O.A., Safaei, M.R., Ghavami, M., Marzban, A., Ahmadi Sheikh Shabani, Gh.R., Zarringhalam, M., and Mashayekhi, R., Analysis of Heat Transfer and Nanofluid Fluid Flow in Microchannels with Trapezoidal, Rectangular and Triangular Shaped Ribs, Physica E, Low-Dimens. Syst. Nanostruct., vol. 91, pp. 15-31, 2017.

  13. Brinkman, H., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., vol. 20, pp. 571-581, 1952.

  14. Chahrazed, B. and Samir, R., Simulation of Heat Transfer in a Square Cavity with Two Fins Attached to the Hot Wall, Energy Procedia, vol. 18, pp. 1299-1306, 2012.

  15. Da Silva, A., Fontana, E., Mariani, V.C., and Marcondes, F., Numerical Investigation of Several Physical and Geometric Parameters in the Natural Convection into Trapezoidal Cavities, J. Heat Mass Transf., vol. 55, pp. 6808-6818, 2012.

  16. Darzi, A.A.R., Farhadi, M., and Sedighi, K., Numerical Study of the Fin Effect on Mixed Convection Heat Transfer in a Lid-Driven Cavity, Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., pp. 397-406, 2011.

  17. Davoudian, M. and Arab Solghar, A., Natural Convection Heat Transfer in a Square Cavity Containing a Nanofluid with a Baffle under a Magnetic Field, Heat Transf. Res., vol. 45, no. 8, pp. 725-748, 2014. DOI: 10.1615/HeatTran-sRes.2014007062.

  18. Ghaffarpasand, O., Numerical Study of MHD Natural Convection Inside a Sinusoidally Heated Lid-Driven Cavity Filled with Fe3O4-Water Nanofluid in the Presence of Joule Heating, Appl. Math. Model., vol. 40, nos. 21-22, pp. 9165-9182, 2016. DOI: 10.1016/j.apm.2016.05.038.

  19. Ghasemi, B. and Aminossadati, S.M., Mixed Convection in a Lid-Driven Triangular Enclosure Filled with Nanofluids, Int. Commun. Heat Mass Transf., vol. 37, no. 8, pp. 1142-1148, 2010.

  20. Ghasemi, B., Aminossadati, S.M., and Raisi, A., Magnetic Field Effect on Natural Convection in a Nanofluid-Filled Square Enclosure, Int. J. Therm. Sci., vol. 50, pp. 1748-1756, 2011.

  21. Gravndyan, Q., Akbari, O.A., Toghraie, D., Marzban, A., Mashayekhi, R., Karimi, R., and Pourfattah, F., The Effect of Aspect Ratios of Rib on the Heat Transfer and Laminar Water/TiO2 Nanofluid Flow in a Two-Dimensional Rectangular Microchannel, J. Mol. Liq., vol. 236, pp. 254-265, 2017.

  22. Gupta, S.K., Chatterjee, D., and Mondal, B., Investigation of Mixed Convection in a Ventilated Cavity in the Presence of a Heat Conducting Circular Cylinder, Numer. Heat Transf., Part A: Applications, Int. J. Comput. Methodol., vol. 67, no. 1, pp. 52-74, 2015.

  23. Hussain, S., Ahmad, S., Mehmood, K., and Sagheer, M., Effects of Inclination Angle on Mixed Convective Nanofluid Flow in a Double Lid-Driven Cavity with Discrete Heat Sources, Int. J. Heat Mass Transf., vol. 106, pp. 847-860, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.10.016.

  24. Iwatsu, R., Hyun, J.M., and Kuwahara, K., Mixed Convection in a Driven Cavity with a Stable Vertical Temperature Gradient, Int. J. Heat Mass Transf., vol. 36, pp. 1601-1608, 1993.

  25. Karimipour, A., Alipour, H., Akbari, O.A., Toghraie Semiromi, D., and Esfe, M.H., Studying the Effect of Indentation on Flow Parameters and Slow Heat Transfer of Water-Silver Nanofluid with Varying Volume Fraction in a Rectangular Two-Dimensional Microchannel, Ind. J. Sci. Technol., vol. 8, no. 15, pp. 51-70, 2015.

  26. Khanafer, K., Vafai, K., and Lightstone, M., Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transf., vol. 46, pp. 3639-3653, 2003.

  27. Mahmoodi, M., Mixed Convection Inside Nanofluid Filled Rectangular Enclosures with Moving Bottom Wall, Therm. Sci., vol. 15, pp. 889-903, 2011.

  28. Maxwell, J., A Treatise on Electricity and Magnetism, Oxford: Oxford University Press, 1873.

  29. Mehmood, K., Hussain, S., and Sagheer, M., Mixed Convection in Alumina-Water Nanofluid Filled Lid-Driven Square Cavity with an Isothermally Heated Square Blockage inside with Magnetic Field Effect: Introduction, Int. J. Heat Mass Transf., vol. 109, pp. 397-409, 2017.

  30. Ogut, E.B., Mixed Convection in an Inclined Lid-Driven Enclosure with a Constant Flux Heater Using Differential Quadrature (dq) Method, Int. J. Phys. Sci., vol. 15, pp. 2287-2303, 2010.

  31. Rashad, A.M., Ismael, M.A., Chamkha, A.J., and Mansour, M.A., MHD Mixed Convection of Localized Heat Source/Sink in a Nanofluid-Filled Lid-Driven Square Cavity with Partial Slip, J. Taiwan Inst. Chem. Eng., vol. 68, pp. 173-186, 2016. DOI: 10.1016/j.jtice.2016.08.033.

  32. Safaei, M.R., Goodarzi M., Akbari, O.A., Safdari Shadloo, M., and Dahari, M., Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications, Electronics Cooling, S.M. Sohel Murshed, Ed., In-Tech, 2016.

  33. Selimefendigil, F. and Oztop, H.F., Estimation of the Mixed Convection Heat Transfer of a Rotating Cylinder in a Vented Cavity Subjected to Nanofluid by Using Generalized Neural Networks, Numer. Heat Transf., Part A: Applications, Int. J. Comput. Methodol., vol. 65, no. 2, pp. 165-185, 2014.

  34. Sharif, M.A.R., Laminar Mixed Convection in Shallow Inclined Driven Cavities with Hot Moving Lid on Top and Cooled from Bottom, Appl. Therm. Eng., vol. 27, pp. 1036-1042, 2007.

  35. Sheikholeslami, M. and Sadoughi, M., Mesoscopic Method for MHD Nanofluid Flow inside a Porous Cavity Considering Various Shapes of Nanoparticles, Int. J. Heat Mass Transf., vol. 113, pp. 106-114, 2017.

  36. Talebi, F., Mahmoudi, A.H., and Shahi, M., Numerical Study of Mixed Convection Flows in a Square Lid-Driven Cavity Utilizing Nanofluid, Int. Commun. Heat Mass Transf., vol. 37, pp. 79-90, 2010.

  37. Wang, X., Mujumdar, A.S., and Yap, C., Free Convective Heat Transfer in Horizontal and Vertical Rectangular Cavities Filled with Nanofluids, Int. Heat Transfer Conf. IHTC-13, Sydney, Australia, 2006.

  38. Zarringhalam, M., Karimipour, A., and Toghrai, D., Experimental Study of the Effect of Solid Volume Fraction and Reynolds Number on Heat Transfer Coefficient and Pressure Drop of CuO-Water Nanofluid, Exp. Therm. Fluid Sci., vol. 76, pp. 342-351, 2016.


Articles with similar content:

MAGNETO-HYDROHDYNAMIC FREE CONVECTION OF NANOFLUIDS IN A FLEXIBLE SIDED TRAPEZOIDAL CAVITY
Computational Thermal Sciences: An International Journal, Vol.12, 2020, issue 2
Fatih Selimefendigil
SIMULATION OF NATURAL CONVECTION OF AN Al2O3/WATER NANOFLUID IN A COMPLEX WAVY-WALL CAVITY USING THE LATTICE BOLTZMANN METHOD
Heat Transfer Research, Vol.50, 2019, issue 15
Alireza Shahriari, Mohammad Rahnama, Ebrahim Jahanshahi Javaran
MHD MIXED CONVECTION IN TRAPEZOIDAL ENCLOSURES FILLED WITH MICROPOLAR NANOFLUIDS
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 4
Sameh Elsayed Ahmed, Xiaohui Zhang, Zehba A. Raizah, M. A. Mansour, Ahmed Kadhim Hussein
ENTROPY GENERATION DUE TO NATURAL CONVECTION COOLING OF A HORIZONTAL HEAT SOURCE MOUNTED INSIDE A SQUARE CAVITY FILLED WITH NANOFLUID
Heat Transfer Research, Vol.43, 2012, issue 1
Farhad Talebi, Mina Shahi, Amir Houshang Mahmoudi
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum