ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018017043
pages 1419-1429

INCREASE IN CONVECTIVE HEAT TRANSFER OVER A BACKWARD-FACING STEP IMMERSED IN A WATER-BASED TiO2 NANOFLUID

C. S. Oon
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
Ahmad Amiri
Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
B. T. Chew
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
S. N. Kazi
Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
A. Shaw
School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom
A. Al-Shamma'a
School of Built Environment, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom

要約

Investigation of flow separation and reattachment of 0.2% water-based TiO2 nanofluid in an annular suddenly expanding pipe is presented in this paper. Such flows occur in various engineering and heat transfer applications. A computational fluid dynamics package (FLUENT) is used to study turbulent nanofluid flow in this research. Only a quarter of an annular pipe was investigated and simulated because of its symmetrical geometry. Standard k–ε second-order implicit, pressure based-solver equations are applied. Reynolds numbers between 17,050 and 44,545, step height ratio of 1.82, and a constant heat flux of 49,050 W/m2 were utilized in simulation. The numerical simulation results show that increase in the Reynolds number leads to an increase of the heat transfer coefficient and of the Nusselt number. Moreover, the surface temperature dropped to its lowest value after the expansion and then gradually increased along the pipe. Finally, the chaotic movement and high thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid.


Articles with similar content:

PRESSURE LOSS AND HEAT TRANSFER THROUGH MULTIPLE ROWS OF SHORT PIN FINS
International Heat Transfer Conference 7, Vol.6, 1982, issue
Z. X. Fan, D. E. Metzger, W. B. Shepard
A NUMERICAL STUDY OF AXISYMMETRIC PULSATING JET IMPINGEMENT HEAT TRANSFER
International Heat Transfer Conference 13, Vol.0, 2006, issue
F. Ahrens, Wichit Liewkongsataporn, T. Patterson
A NUMERICAL STUDY ON THE EFFECTS OF NUMBER OF JETS ON SWIRL COOLING OF A GAS TURBINE BLADE LEADING EDGE
Second Thermal and Fluids Engineering Conference, Vol.4, 2017, issue
Terrence W. Simon, Zhao Liu, Jun Li, Zhenping Feng
THE EFFECT OF DYNAMICS AND THERMAL PREHISTORY ON TURBULENT SEPARATED FLOW AT ABRUPT TUBE EXPANSION
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Viktor I. Terekhov, Tatyana V. Bogatko
NUMERICAL INVESTIGATION OF EFFECT OF HELIX ON HIGH-SPEED STEAM CONDENSATION IN SQUARE/CIRCULAR CHANNELS
Second Thermal and Fluids Engineering Conference, Vol.4, 2017, issue
Funing Cheng, Qiu-Wang Wang, Zhan Yin, Renkun Dai, Min Zeng