ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019031101
pages 641-688

INTEGRATED INFLUENCES OF INCLINATION, NANOFLUIDS, AND FINS ON MELTING INSIDE A HORIZONTAL ENCLOSURE WITH CROSS SECTION OF MAJOR CIRCLE SECTOR

Mahmoud Jourabian
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu, China
Shouqi Yuan
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu, China
Jinfeng Zhang
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu, China
Yalin Li
National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu, China
Ahmad Ali Rabienataj Darzi
Department of Mechanical Engineering, University of Mazandaran, Babolsar, Mazandaran, Iran

要約

Combined effects of inclination with respect to gravity, Cu nanoparticles, and stainless steel partial fins on constrained ice melting with natural convection inside a horizontal enclosure with cross section of major circle sector are examined. Two-dimensional temperature-based lattice Boltzmann method (TLBM) in single-phase framework is applied to treat the solid-liquid phase change process in the presence of nanofluids. Pertinent variables such as transient liquid fraction, average Nusselt number on hot surfaces, average temperature of PCM, and maximum velocity in molten PCM are investigated. It is found that influences of nanofluids and partial internal fins on thermal performance of the horizontal enclosure and interface morphology are related to inclination angle despite the negative effects of increment of viscosity, weakening of natural convection flow, and decrease of storage capacity.

参考

  1. Abdi, A., Martin, V., and Chiu, J.N.W., Numerical Investigation of Melting in a Cavity with Vertically Oriented Fins, Appl. Energy, vol. 235, pp. 1027-1040, 2019.

  2. Agarwal, A. and Sarviya, R.M., An Experimental Investigation of Shell and Tube Latent Heat Storage for Solar Dryer Using Paraffin Wax as Heat Storage Material, Eng. Sci. Tech., Int. J., vol. 19, pp. 619-631, 2016.

  3. Albojamal, A. and Vafai, K., Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport, Int. J. Heat Mass Transf., vol. 114, pp. 225-237, 2017.

  4. Barletta, A., Nobile, E., Pinto, F., Rossi di Schio, E., and Zanchini, E., Natural Convection in a 2D-Cavity with Vertical Isothermal Walls: Cross-Validation of Two Numerical Solutions, Int. J. Therm. Sci., vol. 45, pp. 917-922, 2006.

  5. Bayat, M., Faridzadeh, M.R., and Toghraie, D., Investigation of Finned Heat Sink Performance with Nano Enhanced Phase Change Material (NePCM), Therm. Sci. Eng. Prog., vol. 5, pp. 50-59, 2018.

  6. Bhatti, M.M. and Rashidi, M.M., Effects of Thermo-Diffusion and Thermal Radiation on Williamson Nanofluid over a Porous Shrinking/Stretching Sheet, J. Mol. Liq., vol. 221, pp. 567-573, 2016.

  7. Brinkman, H.C., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., vol. 20, pp. 571-581, 1952.

  8. Chen, Z., Gao, D., and Shi, J., Experimental and Numerical Study on Melting of Phase Change Materials in Metal Foams at Pore Scale, Int. J. Heat Mass Transf., vol. 72, pp. 646-655, 2014.

  9. Clark, J. and Tye, R., Thermophysical Properties Reference Data for Some Key Engineering Alloys, High Temp.-High Pressures, vols. 35-36, pp. 1-14, 2003.

  10. Dhaidan, N.S., Khodadadi, J.M., Al-Hattab, T.A., and Al-Mashat, S.M., Experimental and Numerical Investigation of Melting of NePCM inside an Annular Container under a Constant Heat Flux Including the Effect of Eccentricity, Int. J. Heat Mass Transf., vol. 67 pp. 455-468, 2013.

  11. Esfandiary, M., Habibzadeh, A., and Sayehvand, H., Numerical Study of Single-Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow, Trans. Phenom. Nano Micro Scal., vol. 4, no. 1, pp. 11-18, 2016.

  12. Feng, Y., Li, H., Li, L., Bu, L., and Wang, T., Numerical Investigation on the Melting of Nanoparticle-Enhanced Phase Change Materials (NEPCM) in a Bottom-Heated Rectangular Cavity Using Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 81, pp. 415-425, 2015.

  13. Gao, D. and Chen, Z., Lattice Boltzmann Simulation of Natural Convection Dominated Melting in a Rectangular Cavity Filled with Porous Media, Int. J. Therm. Sci., vol. 50, pp. 493-501, 2011.

  14. Hong, Y., Ye, W.B., Huang, S.M., Yang, M., and Du, J., Thermal Storage Characteristics for Rectangular Cavity with Partially Active Walls, Int. J. Heat Mass Transf., vol. 126, pp. 683-702, 2018.

  15. Huang, R. and Wu, H., An Immersed Boundary-Thermal Lattice Boltzmann Method for Solid-Liquid Phase Change, J. Comput. Phys, vol. 277, pp. 305-319, 2014.

  16. Huang, R. and Wu, H., Phase Interface Effects in the Total Enthalpy-Based Lattice Boltzmann Model for Solid-Liquid Phase Change, J. Comput. Phys., vol. 294, pp. 346-362, 2015.

  17. Huber, C., Parmigiani, A., Chopard, B., Manga, M., and Bachmann, O., Lattice Boltzmann Model for Melting with Natural Convection, Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1469-1480, 2008.

  18. Iachachene, F., Haddad, Z., Oztop, H.F., and Abu-Nada, E., Melting of Phase Change Materials in a Trapezoidal Cavity: Orientation and Nanoparticles Effects, J. Mol. Liq., vol. 292, 2019. DOI: 10.1016/j.molliq.2019.03.051.

  19. Imani, G., Lattice Boltzmann Simulation of Melting of a Phase Change Material Confined within a Cylindrical Annulus with a Conductive Inner Wall Using a Body-Fitted Non-Uniform Mesh, Int. J. Therm. Sci., vol. 136, pp. 549-461, 2019.

  20. Jourabian, M., Rabienataj Darzi, A.A., Toghraie, D., and Akbari, O.A., Melting Process in Porous Media around Two Hot Cylinders: Numerical Study Using the Lattice Boltzmann Method, Physica A: Stat. Mech. Appl., vol. 509, pp. 316-335, 2018.

  21. Kamkari, B. and Groulx, D., Experimental Investigation of Melting Behavior of Phase Change Material in Finned Rectangular Enclosures under Different Inclination Angles, Exp. Therm. Fluid Sci., vol. 97, pp. 94-108, 2018.

  22. Kamkari, B. and Shokouhmand, H., Experimental Investigation of Phase Change Material Melting in Rectangular Enclosures with Horizontal Partial Fins, Int. J. Heat Mass Transf., vol. 78, pp. 839-851, 2014.

  23. Khanafer, K., Vafai, K., and Lightstone, M., Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transf., vol. 46, pp. 3639-3653, 2003.

  24. Li, X., Ma, T., Liu, J., Zhang, H., and Wang, Q., Pore-Scale Investigation of Gravity Effects on Phase Change Heat Transfer Characteristics Using Lattice Boltzmann Method, Appl. Energy, vol. 222, pp. 92-103, 2018.

  25. Li, Z., Sheikholeslami, M., and Bhatti, M.M., Effect of Lorentz Forces on Nanofluid Flow inside a Porous Enclosure with a Moving Wall Using Various Shapes of CuO Nanoparticles, Heat Transf. Res., vol. 50, no. 7, pp. 697-715, 2019. DOI: 10.1651/HeatTransfRes.2018023257.

  26. Lu, J.H., Lei, H.Y., and Dai, C.S., An Optimal Two-Relaxation-Time Lattice Boltzmann Equation for Solid-Liquid Phase Change: The Elimination of Unphysical Numerical Diffusion, Int. J. Therm. Sci., vol. 135, pp. 17-29, 2019.

  27. Luo, K., Yao, F.J., Yi, H.L., and Tan, H.P., Lattice Boltzmann Simulation of Convection Melting in Complex Heat Storage Systems Filled with Phase Change Materials, Appl. Therm. Eng., vol. 86, pp. 238-250, 2015.

  28. Marin, M., Vlase, S., Ellahi, R., and Bhatti, M.M., On the Partition of Energies for the Backward in Time Problem of Thermo-elastic Materials with a Dipolar Structure, Symmetry, vol. 11, no. 7, p. 863, 2019.

  29. Masoumi, H., Haghighi khoshkhoo, R., and Mirfendereski, S.M., Modification of Physical and Thermal Characteristics of Stearic Acid as a Phase Change Materials Using TiO2-Nanoparticles, Thermochimica Acta, vol. 675, pp. 9-17, 2019.

  30. Mishra, S.R., Shahid, A., Jena, S., and Bhatti, M.M., Buoyancy-Driven Chemicalized EMHD Nanofluid Flow through a Stretching Plate with Darcy-Brinkman-Forchheimer Porous Medium, Heat Transf. Res., vol. 50, no. 11, pp. 1105-1126, 2019. DOI: 10.1651/HeatTransfRes.2018027715.

  31. Motahar, S., Nikkam, N., Alemrajabi, A.A., Khodabandeh, R., Toprak, M.S., and Muhammed, M., Experimental Investigation on Thermal and Rheological Properties of n-Octadecane with Dispersed TiO2 Nanoparticles, Int. Commun. Heat Mass Transf., vol. 59, pp. 68-74, 2014.

  32. Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transf., vol. 11, pp. 151-170, 1998.

  33. Parsazadeh, M. and Duan, X., Numerical Study on the Effects of Fins and Nanoparticles in a Shell and Tube Phase Change Thermal Energy Storage Unit, Appl. Energy, vol. 216, pp. 142-156, 2018.

  34. Patel, H.E., Sundararajan, T., Pradeep, T., Dasgupta, A., Dasgupta, N., and Das, S.K., A Micro Convection Model for the Thermal Conductivity of Nanofluids, Pramana-J. Phys., vol. 65, pp. 863-869, 2005.

  35. Ren, Q. and Chan, C.L., GPU Accelerated Numerical Study of PCM Melting Process in an Enclosure with Internal Fins Using Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 100, pp. 522-535, 2016.

  36. Sciacovelli, A., Colella, F., and Verda, V., Melting of PCM in a Thermal Energy Storage Unit: Numerical Investigation and Effect of Nanoparticle Enhancement, Int. J. Energy Res., vol. 37, pp. 1610-1623, 2013.

  37. Su, Y. and Davidson, J.H., A New Mesoscopic Scale Timestep Adjustable Non-Dimensional Lattice Boltzmann Method for Melting and Solidification Heat Transfer, Int. J. Heat Mass Transf., vol. 92, pp. 1106-1119, 2016.

  38. Taghilou, M. and Talati, F., Numerical Investigation on the Natural Convection Effects in the Melting Process of PCM in a Finned Container Using Lattice Boltzmann Method, Int. J. Refrig., vol. 70, pp. 157-170, 2016.

  39. Waqas, H., Ullah Khan, S., Hassan, M., Bhatti, M.M., and Imran, M., Analysis on the Bioconvection Flow of Modified Second-Grade Nanofluid Containing Gyrotactic Microorganisms and Nanoparticles, J. Mol. Liq., vol. 291, no. 1, p. 111231, 2019.

  40. Xu, D., Hu, Y., and Li, D., A Lattice Boltzmann Investigation of Two-Phase Natural Convectionof Cu-Water Nanofluid in a Square Cavity, Case Stud. Therm. Eng., vol. 13, p. 100358, 2019.

  41. Xu, P., Xu, S., Gao, Y., and Liu, P., A Multicomponent Multiphase Enthalpy-Based Lattice Boltzmann Method for Droplet Solidification on Cold Surface with Different Wettability, Int. J. Heat Mass Transf., vol. 127, pp. 136-140, 2018.

  42. Yadollahi Farsani, R., Raisi, A., Ahmadi Nadooshan, A., and Vanapalli, S., Do Nanoparticles Dispersed in a Phase Change Material Improve Melting Characteristics? Int. Commun. Heat Mass Transf., vol. 89, pp. 219-229, 2017.

  43. Zennouhi, H., Benomar, W., Kousksou, T., Ait Msaad, A., Allouhic, A., Mahdaoui, M., and Rhafik, T.E., Effect of Inclination Angle on the Melting Process of Phase Change Material, Case Stud. Therm. Eng., vol. 9, pp. 47-54, 2017.


Articles with similar content:

MIXED CONVECTION HEAT TRANSFER IN A DOUBLE LID-DRIVEN INCLINED SQUARE ENCLOSURE SUBJECTED TO Cu−WATER NANOFLUID WITH PARTICLE DIAMETER OF 90 nm
Heat Transfer Research, Vol.45, 2014, issue 1
Seyed Sadegh Mirtalebi Esforjani, Mohammad Hadi Hajmohammad, Mohammad Reza Heydari, Mohammad Akbari, Mohammad Hemmat Esfe
MIXED-CONVECTION FLOW IN A LID-DRIVEN SQUARE CAVITY FILLED WITH A NANOFLUID WITH VARIABLE PROPERTIES: EFFECT OF THE NANOPARTICLE DIAMETER AND OF THE POSITION OF A HOT OBSTACLE
Heat Transfer Research, Vol.45, 2014, issue 6
Seyed Sadegh Mirtalebi Esforjani, Mohammad Akbari, Arash Karimipour, Mohammad Hemmat Esfe
EXPERIMENTAL STUDY OF MELTING IN A RECTANGULAR CAVITY
International Heat Transfer Conference 7, Vol.3, 1982, issue
Raymond Viskanta, C.J. Ho
THE ENTHALPY-POROSITY METHOD WITH A RECTANGULAR SPECIFIC HEAT CURVE
International Heat Transfer Conference 16, Vol.10, 2018, issue
Alvaro de Gracia, Wim Beyne, Michel De Paepe, Gabriel Zsembinszki, Luisa F Cabeza, Bernd Ameel
Experimental and Numerical Investigations of Phase Change Heat Transfer Characteristics in Open-Cell Metal Foam Infiltrated with Eutectic Salt for Solar Energy Storage
International Heat Transfer Conference 15, Vol.57, 2014, issue
Xin Xiao, Peng Zhang, Ming Li