ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 0.404 5年インパクトファクター: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006894
pages 333-345

EXPERIMENTAL STUDY OF A THERMALLY DRIVEN COMPOSITE ADSORPTION REFRIGERATOR

Q. W. Pan
Institute of Refrigeration and Cryogenics, Key Laboratory for Power Machinery and Engineering of M.O.E., Shanghai Jiao Tong University, Shanghai, 200240, China
R Z Wang
Shanghai Jiao Tong University
Z. S. Lu
Institute of Refrigeration and Cryogenics, Key Laboratory for Power Machinery and Engineering of M.O.E., Shanghai Jiao Tong University, Shanghai, 200240, China
Liwei Wang
Institute of Refrigeration and Cryogenic, Key Laboratory of Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, China

要約

A thermally driven adsorption refrigerator using CaCl2 (calcium chloride)/AC (activated carbon) composite adsorbent has been developed. Through the optimal design, fewer valves are used, the vibration and noise are lowered, and the size of the adsorption bed is decreased, i.e., the adsorption refrigerator is more compact. The performance of the refrigerator is tested, and the experimental results showed that the cooling capacity, COP (coefficient of performance), SCP (specific cooling power per kilogram of adsorbent), and VCD (volume cooling density) are equal respectively to 3.74 kW, 0.26, 440.0 W kg−1 and 69.73 kW·m−3 under the conditions of 140°C heating temperature, 28°C cooling water temperature, and −12.5°C evaporation temperature. The system's dynamic characteristics indicated the cyclical variations in temperature and pressure as well as the obvious eff ects of desorption action and mass recovery process on the system performance. Meanwhile, experimental results showed that the performance of the system can be improved significantly by the higher heating temperature, mass recovery process, and the reasonable ratio of the adsorption/desorption time to the mass recovery time.