ライブラリ登録: Guest
Begell Digital Portal Begellデジタルライブラリー 電子書籍 ジャーナル 参考文献と会報 リサーチ集
Heat Transfer Research
インパクトファクター: 1.199 5年インパクトファクター: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 印刷: 1064-2285
ISSN オンライン: 2162-6561

巻:
巻 51, 2020 巻 50, 2019 巻 49, 2018 巻 48, 2017 巻 47, 2016 巻 46, 2015 巻 45, 2014 巻 44, 2013 巻 43, 2012 巻 42, 2011 巻 41, 2010 巻 40, 2009 巻 39, 2008 巻 38, 2007 巻 37, 2006 巻 36, 2005 巻 35, 2004 巻 34, 2003 巻 33, 2002 巻 32, 2001 巻 31, 2000 巻 30, 1999 巻 29, 1998 巻 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018021524
pages 1745-1760

EXPERIMENTAL INVESTIGATION ON THE HEAT TRANSFER PERFORMANCE OF HEAT PIPES IN COOLING HEV LITHIUM-ION BATTERIES

Faiza M. Nasir
Mechanical Section, Universiti Kuala Lumpur Malaysian Spanish Institute, Kulim Hi-Tech Park, Kedah, Malaysia; School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, P. Pinang, Malaysia
Mohd Zulkifly Abdullah
School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, 14300, Malaysia
Mohd A. Ismail
School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, P. Pinang, Malaysia

要約

The lithium-ion battery, the energy source and storage device for an electric vehicle, is susceptible to operating temperature. Improper temperature control of the battery would lead to capacity and lifecycle degradation, and higher safety risks. Methods of controlling the temperature such as air cooling, liquid cooling, and PCM have been widely investigated but a few studied the use of heat pipes. The objective of this paper is to present experimental works conducted to investigate the feasibility of using heat pipes in the thermal management of lithium-ion battery cells. The battery cells were represented by two proxy cells with a heat source ranging from 5 W to 20 W/cell. The evaporator section of the heat pipes was attached to the surfaces of the cells, and the condenser section was exposed to air forced convection. The heat generation rate, the length of the condenser section, and the air velocity were varied, and the surface temperature of the proxy battery cells was recorded. The results showed that the heat pipes are able to reduce the battery cell temperature by at least 14.7°C and improve the total thermal resistance by an average of 41.6%, when compared with the battery without any thermal management. It was also observed that the heat pipe thermal management system is able to control the temperature below 50°C when the heat generated by each cell is less than 10 W. The temperature difference within the cell is also kept below the desired limit of 5°C when the length of the condenser is 100 mm or less.


Articles with similar content:

COOLING OF A CONCENTRATED PHOTOVOLTAIC CELL USING HEAT PIPES
Heat Pipe Science and Technology, An International Journal, Vol.5, 2014, issue 1-4
Sang Min Kim, Joon Hong Boo, Jae Hyuk Shin, Seung Shin Yi
CELL SPACING OPTIMIZATION OF BATTERY PACK IN PARALLEL AIR-COOLED BATTERY THERMAL MANAGEMENT SYSTEM WITH U-TYPE FLOW
International Heat Transfer Conference 16, Vol.10, 2018, issue
Shuangfeng Wang, Kai Chen
Design and Analysis of Cold Plate for Electric Vehicle Battery Pack
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Joseph Raj Chandra Kanth B P, Babu Rao Ponangi
EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT OF HOME RADIATORS BY EMPLOYING SOLAR CELLS AND FANS
Heat Transfer Research, Vol.51, 2020, issue 1
Faraz Afshari
THERMAL PERFORMANCE OF A HIGH-TEMPERATURE SOLAR ABSORBER EMBEDDED WITH LIQUID METAL HEAT PIPE
Heat Pipe Science and Technology, An International Journal, Vol.5, 2014, issue 1-4
Sang Min Kim, Joon Hong Boo, Jae Hyuk Shin, Seung Shin Yi